
A Lie Algebraic Model Predictive Control for Legged Robot Control:
Implementation and Stability Analysis

Sangli Teng, Maani Ghaffari

Abstract— Rigid body model has been widely adopted to
plan the centroidal motion of legged robot. However, the
rigid body motion evolves on the SE(3) manifold, which is
nonlinear and not trivial to parameterize. The existing Model
Predictive Control (MPC) either uses local parameterization
that suffers from singularities, or geometric based liearization
that makes the problem state dependent or hard to vectorize.
In this work, we focus on the MPC on matrix Lie group.
We linearize the configuration error and design a quadratic
cost function in its Lie algebra. Given an initial condition, the
linearized configuration error dynamics is globally valid and
evolve independently of the system trajectory. The quadratic
cost function could also ensure exponential convergence rate.
The proposed MPC has been experimentally validated in MIT
mini Cheetah locomotion and pose control.

Paper Type - Recent work [1], [2].

I. INTRODUCTION

The geometry of the configuration space of a robotics
system can naturally be modeled using matrix Lie (contin-
uous) groups [3], [4]. For example, the centroidal dynamics
of legged robots can be approximated by a single rigid body,
whose motion is on SE(3).

The Euler angle based convex Model Predictive Control
(MPC) [5] has been proposed for locomotion planning on the
quadrupedal robot. Zero roll and pitch angle assumptions are
validated by assuming a flat ground, which may fail when
such assumptions no longer hold. To avoid the problem, the
geometric MPC that utilize the symmetry of the Lie group
has been proposed. A local control law has been proposed
in [6], [7], where the linearized dynamics are defined by
a local diffeomorphism from the SE(3) manifold to Rn
space. However, such a diffeomorphism is not unique and
too abstract for controller design. The Variational Based
Linearization (VBL) technique [8] are applied to linearize
the Lagrangian to obtain the discrete-time equation of motion
and applied to robot pose control [9]. A VBL based MPC is
proposed in [10] for locomotion on discrete terrain using
a gait library. The result suggests that the VBL based
linearization can preserve the energy, thus making the system
more stable. However, the VBL method linearized the system
at the reference trajectory, which may result in unstable
motion [11]. Other than linearizing at the reference trajectory,
the work of [11] linearized the system at the current operating
point to obtain the Quadratic Programming (QP) problem for
tracking of legged robot trajectory. However, the linearized
state matrix of [11] depends on the orientation, which can be
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Fig. 1: The proposed error-state MPC framework. The tracking error is
defined on a matrix Lie group and linearized in the Lie algebra. A convex
MPC algorithm is derived via the linearized dynamics for tracking control.
The proposed algorithm is applied to a single rigid body system and verified
on a quadrupedal robot MIT Mini Cheetah. A quadratic cost function in Lie
algebra can verify the exponential stability of the proposed MPC.

avoided by exploiting the symmetry of the system as done
in this work.

This paper summarizes our pre-prints [1] about the MPC
and [2] about the stability analysis. In particular, the main
contributions are as follows:

1) We derive the linearized configuration error dynamics
and equations of motion in the Lie algebra (tangent
space at the identity) that, given an initial condition, are
globally valid and independent of the system trajectory.

2) We develop a convex MPC algorithm for the tracking
control problem using the linearized error dynamics,
which can be solved efficiently using QP solvers.

3) The proposed controller is validated in experiments on
quadrupedal robot pose control and locomotion.

4) The exponential stability can be verified by a quadratic
Lyapunov function expressed in the Lie algebra.

II. MATH PRELIMINARY

This section provides a brief overview of the necessary
mathematical background used in the developed approach.

Let G be an n-dimensional matrix Lie group and g its
associate Lie algebra (hence, dim g = n) [12], [13]. For
convenience, we define the following isomorphism

(·)∧ : Rn → g, (1)

that maps an element in the vector space Rn to the tangent
space of the matrix Lie group at the identity. Then, for any
ϕ ∈ Rn, we can define the Lie exponential map as

exp(·) : Rn → G, exp(ϕ) = expm(ϕ
∧), (2)

where expm(·) is the exponential of square matrices. The
Lie logarithmic map as the inverse of Lie exponential map



is defined as:
log(·) : G → Rn. (3)

For every X ∈ G, the adjoint action, AdX : g → g, is a
Lie algebra isomorphism that enables change of frames

AdX(ϕ∧) = Xϕ∧X−1. (4)

Its derivative at the identity gives rise to the adjoint map in
the Lie Algebra as

adϕη = [ϕ∧, η∧], (5)

where ϕ∧, η∧ ∈ g and [·, ·] is the Lie Bracket.
Consider the motion of an object whose state space is a Lie

group G. We define a left-invariant Lagrangian L : g → R:

L(ξ) = 1

2
ξTJbξ,

where ξ is the twist in the body frame, and Jb is the
generalized inertia matrix in the body fixed principal axes.
Given the left invariant Lagrangian, We can then write the
forced Euler-Poincaré equations [14] as

Jbξ̇ = ad∗ξJbξ + u, (6)

where u ∈ g∗ is the generalized control input force applied
to the body fixed principal axes, ad∗ is the co-adjoint action,
and g∗ is the cotangent space.

For tracking control on Lie group G , we define the desired
trajectory as Xd,t ∈ G and the actual state as Xt ∈ G, both
as function of time t. Given the twists ξt and desired twists
ξd,t and the reconstruction equation, we have

d

dt
Xt = Xtξ

∧
t ,

d

dt
Xd,t = Xd,tξ

∧
d,t.

Similar to the left or right error defined in [15], we define
the error between Xd

t and Xt as

Ψt = X−1
d,tXt ∈ G. (7)

For the tracking problem, our goal is to drive the error
from the initial condition Ψ0 to the identity I ∈ G. Taking
derivative on both sides of (7), we have

d

dt
Ψt = Ψ̇t =

d

dt
(X−1

d,t )Xt +X−1
d,t

d

dt
Xt

= X−1
d,t

d

dt
Xt −X−1

d,t

d

dt
(Xd,t)X

−1
d,tXt

= X−1
d,tXtξ

∧
t −X−1

d,tXd,tξ
∧
d,tX

−1
d,tXt = Ψtξ

∧
t − ξ∧d,tΨt.

Therefore,

Ψ̇t = Ψt(ξt −Ψ−1
t ξd,tΨt)

∧ = Ψt(ξt −AdΨ−1
t
ξd,t)

∧,
(8)

III. ERROR-STATE CONVEX MPC
A. System linearization

Recall that we can map the error from the Lie Algebra to
the group element by the group exponential map. We define
ψ∧
t as an element of the Lie Algebra that corresponds to Ψt.

Thus by the exponential map, we have

Ψt = exp(ψt), Ψt ∈ G, ψ∧
t ∈ g.

Given the first-order approximation of the exponential map,

Ψt = exp(ψt) ≈ I + ψ∧
t ,

and a first-order approximation of the adjoint map

AdΨt
≈ AdI+ψt

∧ ,

we can linearize (8) by dropping the second-order terms as

Ψ̇t ≈ (I + ψ̇∧
t ) ≈ (I + ψ∧

t )(ξt −Ad(I−ψ∧
t )ξd,t)

∧, (9)

ψ̇t = −adξd,tψt + ξt − ξd,t. (10)

Equation (10) is the linearized velocity error in the Lie
algebra.

Remark 1. Lifting the problem to the Lie algebra vectorizes
the dynamics without complicated manipulations.

The dynamics of ξt is described by (6), which is nonlinear.
To compute a locally linear approximation of the nonlinear
term, we adopt the Jacobian linearization around the operat-
ing point ξ̄

Jbξ̇ ≈ ad∗ξ̄Jbξ̄ +
∂ad∗ξJbξ

∂ξ
|ξ̄(ξ − ξ̄) + u. (11)

Thus, we have the linearized dynamics in the following form

ξ̇ = Htξ + J−1
b u+ bt, (12)

We define the system states as xt :=

[
ψt
ξt

]
. Then, the

linearized dynamics becomes

ẋt = Atxt +Btut + ht, (13)

where

At :=

[
−adξd,t I

0 Ht

]
, Bt :=

[
0
J−1
b

]
, ht :=

[
−ξd,t,
bt

]
.

Remark 2. The operating point ξ̄, for computing H and
b, need not to be the reference trajectory ξd,t. In following
sections, we set the operating point at the current system
states when the controller is applied, which exhibit higher
stability as shown by [11].

Remark 3. Up to now, the linearization is general for any
Lie group system. For the implementation in SE(3) rigid
body, the specific form of the matrices can be found in [1].

B. Convex MPC design

On Lie groups, our cost function is designed to regulate
the tracking error ψt and its derivative ψ̇t rather than the
difference between ξd,t and ξt. Thus, our tracking error can
be designed as:

yt :=

[
ψt
ψ̇t

]
=

[
I 0

−adξd,t I

]
xt −

[
0
ξd,t

]
, (14)

Given some semi-positive definite weights P , Q, and R, we
can now write the quadratic cost function as

N(ytf ) = yTtfPytf , L(yt, ut) = yTt Qyt + uTt Rut. (15)



Given the future twists ξd,t, initial error state ψ0 and twist
ξ0, we can define all the matrices. Discretizing the system
at time steps {tk}Nk=1, we can design the MPC as follows.

Problem 1. Find uk ∈ g∗ such that

min
uk

yTNPyN +

N−1∑
k=1

yTkQyk + uTkRuk

s.t. xk+1 = Akxk +Bkuk + hk

uk ∈ Uk, x0 = x(0)

k = 0, 1, . . . , N − 1.

In Problem 1, Ak, Bk, and hk can be obtained by zero-
order hold or Euler first-order integration. Problem 1 is a QP
problem that can be solved efficiently, e.g., using OSQP [16].

IV. STABILITY ANALYSIS

The stability of the proposed controller could be verified
by a quadratic Lyapunov cost function in Lie algebra. First,
we introduce the left invariant inner product that defines the
inner product in different tangent space.

Definition 1. Given ϕ1, ϕ2 ∈ Rdim g and ϕ∧1 , ϕ
∧
2 ∈ g, we

define the inner product ⟨ϕ∧1 , ϕ∧2 ⟩g = ϕT1Pϕ2, where P is a
positive definite matrix. This inner product is left-invariant.
To see this, suppose Xϕ∧1 , Xϕ

∧
2 ∈ TXG, ∀X ∈ G, then

⟨Xϕ∧1 , Xϕ∧2 ⟩X = ⟨(ℓX−1)∗Xϕ
∧
1 , (ℓX−1)∗Xϕ

∧
2 ⟩g

= ⟨ϕ∧1 , ϕ∧2 ⟩g,

where (ℓX−1)∗ = X−1 : TXG → g is the pushforward map.

Then, we could derive the gradients of the quadratic cost
function in the tangent space.

Theorem 1. Consider the state X ∈ G, ϕ ∈ Rdim g, and
X = exp (ϕ). We consider the metric in Definition 1. The
function h = 1

2∥ϕ∥
2
P is a candidate Lyapunov function and

the gradient of h with respect to X is

∇h = Xϕ∧. (16)

Finally, we show that a linear feedback in Lie algebra
could regulate the state to the identity exponentially.

Theorem 2. Consider the state in Theorem 1 as a trajectory.
Let ξ∧ ∈ g. The system

Ẋ = Xξ∧

can be exponentially stabilized to X = I by linear feedback
ξ = −Kϕ, where K is a gain matrix with only positive
eigenvalues.

The detailed proof of the theorems are presented in [2].
For the proposed MPC we could follow the same steps and
estimate the region of attraction. For the unconstrained case,
the resulting LQR problem will lead to a linear feedback,
whose stability property can be verified by Theorem. 2.

V. VALIDATION ON QUADRUPEDAL ROBOT

We now conduct two experiments on the quadrupedal
robot Mini Cheetah [17] to evaluate the proposed MPC. Both

Fig. 2: Reference signal for roll and yaw angle tracking. From 1 to 11 secs,
the robot roll changes from 0 to -57.3 degree and yaw changes from 0 to
28.5 degree. Then the robot leans to the opposite side for 10 seconds.

experiments use a single rigid body model to approximate the
torso motion. We apply MIT controller [5] with the proposed
MPC to plan the ground reaction force (GRF).

A. Robot pose tracking

In this experiment, a mixture of roll and yaw reference
angle is applied for tracking. The reference signals and
snapshots of robot motion are presented in Fig. 2. Each
controller is implemented three times. The details of the
responses are presented in Fig. 3. It can be seen that as
no feedforward force at the equilibrium is provided, all
controllers have steady-state error. However, the geometric-
based controller, i.e., proposed and the VBL based MPC, has
a smaller steady-state error than the Euler angle-based one.
As the VBL based MPC does not conserve the scale of the
error, the convergence rate is much lower than our controller,
especially when the opposite Euler angle signal is applied at
the middle of the reference profile. As can been seen in the
Fig. 3, at 11.5 s, the tracking performance of the VBL based
method has an trakcing error that is 0.3 rad more than the
proposed one.

B. Robot trotting

We also apply our controller to robot locomotion. Ours
and baseline controllers are deployed to plan the robot’s
GRF given command twists. Then the GRF is applied to
the Whole Body Impulse Control (WBIC) [18] to obtain the
joint torques. Unlike the conventional whole-body controller,
WBIC prioritizes the GRF generation by penalizing the
deviation of GRF from the planned GRF. We increase the
penalty for the GRF by 1e4 times in the original WBIC, so
the GRF merely deviates from the planned one.

We first apply a step signal in yaw rate. Then we add a
step signal in x motion in the robot frame, and the yaw rate
becomes a sinusoidal signal. The reference is presented in
Fig. 5 and the snapshots of the experiments are in Fig. 4.
We find that ours and the VBL-MPC can better track the
yaw rate than the Euler angles-based MPC, as expected. As
the orientation and position tracking errors are small because
every step is integrated from the current state, it is reasonable
that all controllers perform well in position tracking. The
result can be seen in Fig. 5.
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Fig. 3: Error convergence for roll and yaw tracking. When a new step signal is applied, our controller converges faster than the baseline methods and has
a smaller steady-state error. The Euler angle-based MPC has a larger steady-state error as both roll and yaw signals are applied.

Fig. 4: Snapshots of the experiments on reference tracking in Mini Cheetah
trotting. The time corresponds to the reference signal in Fig. 5.

0 2 4 6 8 10 12 14

-2

0

2

0 2 4 6 8 10 12 14

0

0.2

0.4

0.6

Fig. 5: Reference tracking for quadrupedal robot trotting. Each controller
is tested three times. The responses are too noisy; thus, the results are
smoothed using the moving average filter.

VI. CONCLUSIONS

We developed a new error-state Model Predictive Control
approach on connected matrix Lie groups for robot control.
By exploiting the existing symmetry of pose control problem
on Lie group, we showed that the linearized tracking error
dynamics and equations of motion in the Lie algebra are
globally valid and evolve independently of the system tra-
jectory. In addition, we formulated a convex MPC program
for solving the problem efficiently using QP solvers. An
Lyapunov function expressed in Lie algebra is introduced
to verify the exponential stability of the proposed controller.
The experimental results confirm that the proposed approach
provides faster convergence when rotation and position are
controlled simultaneously. Future work will implement the
trajectory optimization using this geometric control frame-
work proposed in [2] for legged robot control.
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