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Abstract— We present a versatile nonlinear model predictive

control (NMPC) approach for quadrupedal locomotion. Our

formulation jointly optimizes a base trajectory and a set

of footholds over a finite time horizon based on simplified

dynamics models. We leverage second-order sensitivity analysis

and a sparse Gauss-Newton (SGN) method to solve the resulting

optimal control problems. We further describe our ongoing

effort to verify our approach through simulation and hardware

experiments. Finally, we extend our locomotion framework

to deal with challenging tasks that comprise gap crossing,

movement on stepping stones, and multi-robot control.

Paper Type – Original Work.

I. INTRODUCTION

Model predictive control (MPC) is a powerful tool for en-
abling agile and robust locomotion skills on legged systems.
Its capability of handling flying phases while rejecting dis-
turbances enhances the maneuverability [1, 2] and mobility
of quadruped robots [3].

Standard MPC implementations are required to solve
finite-horizon optimal control problems (OCPs) at a real-time
rate. This process comes with a high computational cost that
defies online execution. Current existing MPC methods for
quadrupedal locomotion tackle this challenge by thorough
software designs and high-performance, parallel implemen-
tations [4, 5]; alternatively, they adopt simplified dynamics
models to reduce computational burdens [1, 2, 6, 7].

In this paper, we present a versatile nonlinear MPC
(NMPC) strategy that jointly optimizes a base trajectory and
a set of footholds. We describe the system dynamics as
a function of a control input vector evolving over a time
horizon and a time-invariant set of footholds. We solve the
resulting OCP using a second-order numerical solver [8]
that leverages sensitivity analysis (SA) [9, 10, 11] to com-
pute the exact values of the required derivatives efficiently.
This approach significantly improves the robustness of the
controller while ensuring real-time execution. Moreover, our
formulation is easily adaptable to various nonlinear models
and quadrupedal locomotion scenarios.

In the following sections, we provide the mathematical
formulation of our method. Furthermore, we describe two
examples based on different nonlinear dynamics models
compatible with our framework. Finally, we present our
preliminary results verifying our approach and applying it
to generic locomotion control tasks.
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Fig. 1. Our MPC-based locomotion controller in action on a simulated
Unitree A1 robot (left) and a real one (right). Given kinematically generated
references (red curve and yellow circles), our planner generates optimal
base trajectory (green curve) and footholds (orange circles) that are
dynamically feasible.

II. NONLINEAR MPC
In this section, we describe our optimal control framework

based on second-order SA. Subsequently, we formulate a
model-agnostic OCP for quadrupedal locomotion, where the
optimization variables include system states and stepping
locations. Finally, we provide two examples applying our
formulation to nonlinear dynamics models; namely, the
variable-height inverted pendulum and the single rigid body
model.

A. Framework
We express the discrete-time dynamics of a system

through an implicit function:

Gk(xk, xk+1,uk, p) = 0n , (1)

where xk 2 Rn and uk 2 Rm denote the system state
and control input vectors at time step k, respectively, Gk

is a differentiable function capturing the system evolution
at time step k, and 0n 2 Rn is the n-dimensional zero
vector. In this formulation, the dynamics further depend on
a time-invariant vector of parameters p 2 Rp: while uk

affects the system only at time step k, p does so at all time
steps. In our application to locomotion control, p represents
a set of footholds to be stepped on over a time horizon (see
Section II-B).

We define the stacked state and input vectors as

X :=
⇥
x>
1 x>

2 . . . x>
N

⇤>
,

U :=
⇥
u>
0 u>

1 . . . u>
N�1 p>⇤> ,



respectively, where N denotes the time horizon. Additionally,
given a measurement x0 of the current state of the system,
we define the stacked dynamics constraint function as:

G(X,U) :=
⇥
G>

0 G>
1 . . . G>

N�1

⇤>
. (2)

Then, we can define a finite-horizon OCP for the system (1)
as:

min
X,U

J (X, U)

s.t. G(X,U) = 0 ,
(3)

where J (X, U) is a cost function that depends on the
stacked state and input vectors. We implement state and input
constraints through penalty terms added to J (X, U).

If an explicit function gk such that xk+1 = gk(xk, uk, p)
is available, then we can define Gk := xk+1�gk(xk, uk, p)
to adapt the system dynamics equation to the form (1).
However, we note that (1) is general enough for the cases
where an explicit form of the dynamics equations does not
exists. For instance, if the backward Euler time integration
method is adopted, the system dynamics may not be made
explicit. Under mild assumptions, (1) implies that there is a
map between X and U, i.e., X(U) although the map may
not have an analytic form. Therefore, we can convert (3) into
the following unconstrained minimization problem:

min
U

J (X(U), U) . (4)

We find the optimal control inputs and parameters U⇤

minimizing the cost function of U. Even if an analytical
expression of X(U) does not exist, we can perform such
optimization using a second-order method through sensitivity
analysis [10, 9, 11]. SA allows us to compute the exact values
of the first and the second derivatives efficiently:

dJ
dU

=
@J
@X

S+
@J
@U

, (5a)
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,

(5c)

where the sensitivity matrix S can be evaluated as follows:

S = �
✓
@G

@X

◆�1 @G

@U
. (6)

For full derivation, we refer the reader to the technical
note [9]. We note that the generalized Gauss–Newton ap-
proximation (5c) can be employed in place of the Hessian
(5b) to reduce the computational burden and to guarantee the
semi-positive definiteness of the second derivative.

B. Quadrupedal Locomotion Control

We formulate an OCP for quadrupedal locomotion using
the framework described in Section II-A. The main objective
is to track a reference base trajectory generated from a user’s

commands. Thus, we define the following cost function on
the base positions rk over a time horizon N :

J (X, U) :=
NX

k=0

k(rk+1 � rk)� (rrefk+1 � rrefk )k22 (7a)

+
NX

k=0

khk+1 � href
k+1k22 (7b)

+
pX

i=1

min (p,i+3)X

j=i+1

K1k(si � sj)� (sref,i � sref,j)k22

(7c)
+Rmodel(X, U) , (7d)

The term (7a) penalizes base velocity tracking errors,
(7b) penalizes base height tracking errors, (7c) regularizes
the displacements between adjacent stepping locations, and
finally (7d) is a model specific cost term. The variable rk
are parts of the system state vector xk, and si is a part of
the parameter vector p.

Equation (7c) with weighting coefficient K1 regularizes
the foothold optimization towards kinematically feasible so-
lutions. The reference footholds sref,i are determined based
on a simple impact-to-impact method whereby support feet
lie below the corresponding hip in the middle of the stance
phase [12]. We note that the term (7c) only penalizes
relative positions between stepping locations, thus making
the corresponding support polygons loosely resemble the
reference ones [13].

C. Examples
We briefly describe two nonlinear systems, namely the

variable-height inverted pendulum (IPM) and the single rigid
body (SRBM) models, and we show how they can be
integrated into our framework.

When possible, we discretize the continuous dynamics by
employing a semi-implicit Euler method; given rk and rk�1,
we approximate the velocity at time steps k and k + 1,
respectively, as ṙk ⇡ (rk�rk�1)/�t and ṙk+1 ⇡ ṙk+r̈k�t,
where r̈k can be computed using a model-specific dynamics
equation:

rk+1⇡ rk + ṙk+1�t

⇡ rk + ṙk�t+ r̈k�t2

⇡ 2rk � rk�1 + r̈k�t2

= 2rk � rk�1

+ fmodel(rk, uk, s
i1 , si2 , . . . , si|�k|)�t2

=: gmodel,k (rk�1, rk, uk, s) , (8)

where �k denotes the subset of the stance foot positions
at time step k, and sij 2 �k, 8j 2 {1, 2, . . . , |�k|}. The
makeup of the control input vector uk depends on the model
and we will introduce it in due time.

In the following subsections, we define an explicit function
fmodel for the IPM and the SRBM. As mentioned in Sec-
tion II-A, we define Gk := xk+1 � gk(xk, uk, p) since an
explicit expression of the system dynamics equation exists.
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Fig. 2. A quadrupedal robot represented as an inverted pendulum (top),
and a single rigid body (bottom).

1) Inverted Pendulum Model: The inverted pendulum
model represents a legged robot as a point mass m concen-
trated at the center of gravity of the system r and a massless
telescoping rod in contact with a flat ground. We assume
that the contact point of the rod is at the center of pressure
(CoP) of the robot p, i.e., the location at which the resultant
ground reaction force vector f would act if it were considered
to have a single point of application [14]. The CoP always
exists inside the support polygon of all stance foot positions
si 2 R3. Thus, we can express its position with respect to
an inertial reference frame as a convex combination

p =
X

si2�

wi si, (9)

where � is the set of the stance foot positions, and wi 2
R�0 is a non-negative scalar weight corresponding to si that
satisfy

P
i w

i = 1 .
For brevity, we omit the derivation of the following

equation of motion for the IPM1:

r̈ = (r�
X

si2�

wi si)
ḧ+ kgk2

rz
+ g

=: fIPM(r, u, s
i1 , si2 , . . . , si|�|) , (10)

with control input vector u :=
h
ḧ wi1 wi2 . . . wi|�|

i>
, and

parameters sij 2 �, 8j 2 {1, 2, . . . , |�|}.
Furthermore, we define the model specific cost term (7d)

for the IPM as follows:

RIPM =:
N�1X

k=0

 
K2

2
k1�

X

i

wi
kk22 +

X

i

S�0(w
i
k)

!
, (11)

1The full derivation of the IPM is available in our recent work [15].

where K2 is a weighting coefficient and S�r : R !
R�0, 8r 2 R is a C2-continuous function following [16, eq.
(8)] with unitary stiffness and ✏ = 0.1. This term enforces the
constraint

P
i w

i = 1 , and the non-negativity of the weights
as soft constraints.

2) Single Rigid Body Model: If the limbs of a robot are
significantly lightweight compared to its body, then we can
neglect their inertial effects and reduce the system to a single
rigid body with mass m and body frame moment of inertia
BI 2 R3⇥3.

The position r 2 R3 and unit quaternion q 2 S3 defines
the pose of the lumped rigid body. B! denotes its angular
velocity vector expressed in body coordinates, and f i 2
R3 denotes the ground reaction force associated with the
stepping location si 2 �. Then, we can write the translational
and rotational dynamics of the system as:

r̈ =
1

m

X

si2�

f i + g =: fSRBM,t(u) , (12)

B!̇ = BI�1

"
R(q)>

X

si2�

�
si � r

�
⇥ f i � B! ⇥ BIB!

#

=: fSRBM,r(r, q,
B!, u, si1 , si2 , . . . , si|�|) , (13)

where R(q) is the rotation matrix corresponding to q, and
u :=

⇥
f i1 f i2 . . . f i|�|

⇤> is the control input vector.
We employ a semi-implicit Euler method similar to the one

outlined in Section II-C. However, to integrate the orientation
dynamics, we employ a forward Lie-group Euler method
which allows us to preserve the unitary norm constraint
of unit quaternions. Specifically, we approximate the body
frame angular velocity at time step k and k+1, respectively,
as B!k ⇡ 2 Im(q̄k�1 ⇤ qk)/�t and B!k+1 ⇡ B!k +
B!̇k�t, where Im(q) extracts the imaginary part of q, q̄
is the conjugate of q, ⇤ is the quaternion multiplication
operator, and B!̇k can be computed using (13). Then, our
integration scheme for unit quaternions translates to qk+1 ⇡
qk ⇤ exp

�
B!k+1�t

�
, where exp: R3 ! S3 is a Lie-group

exponential function which, for unit quaternions, has the
following closed form:

exp(v) := cos

✓
1

2
kvk

◆
+

v

kvk sin

✓
1

2
kvk

◆
.

Using the equations above, we can finally write the SRBM
dynamics in the form (8) as:

rk+1

qk+1

�
⇡

2rk � rk�1 + fSRBM,t(uk)�t2

qk ⇤ exp
�
B!k+1�t

�
�

:= gSRBM,k(rk�1, rk, qk�1, qk, uk, s) . (14)

Following (7d), we can define a cost term for the SRBM
penalizing deviations from a reference orientation trajectory
qref
k [17] and imposing non-negative vertical components of

the GRFs2:

RSRBM =:
N�1X

k=0

 
1�

��q>
k q

ref
k

��+
X

i

S�0(f
i
z,k)

!
. (15)

2For our preliminary results, we do not include friction cone soft
constraints to (15) to keep our implementation as simple as possible.



Fig. 3. We pushed (left) and disturbed the Unitree A1 robot by putting a
plate under its feet (right) while it was performing a trot gait.

III. EXPERIMENTS

We present a series of simulation and hardware experi-
ments we conducted to verify the efficacy of our approach.
The results we discuss in this section were attained using
the IPM described in section II-C.1. The footage of the
experiments is available in the supplementary video2, along
with preliminary results achieved with the SRBM. In all
our experiments, the optimal base trajectories output by the
MPC scheme were tracked by a quadratic programming-
based whole-body controller [10].

Firstly, we tested the robustness of our controller for
locomotion on flat terrains using the Unitree A1 robot. We
hindered the robot while it was trotting in place, as portrayed
in the snapshots in Figure 3. In our tests, the robot was
able to withstand unexpected disturbances and successfully
recover its stability. We demonstrate in the accompanying
video how the foothold optimization improves the capability
of the system to resist large lateral pushes.

We show the versatility of our foothold optimization
approach to adapt a gait to different terrain types, namely
a gap crossing and a stepping stones scenarios. The former
setting consists of a sequence of rifts with different widths;
the latter comprises a grid of stepping stones distant 20 cm
from each other the robot must step on – see Figure 4. We
add the following terms to the objective function (7) to model
each gap and stepping stone, respectively:

Lgc(s) :=
pX

i=1

S�g(|six � gx|) , (16)

Lss(s) :=
pX

i=1

�K3 exp

⇢
�1

2

ksi � tk22
K2

4

�
, (17)

where g and gx are the gap half width and x-position,
respectively, t is the stepping stone location, and K3 and
K4 are tuning parameters. To model the stepping stones in
(17), we employ a negative Gaussian function centered at the
corresponding positions; in this way, we incentivize nearby
stepping locations to converge towards the closest footholds.
As shown in the supplementary video, these simple penalty
terms are sufficient to ensure that the associated constraints
are almost never violated. The occasional missteps may be
avoided through a careful tuning of (16) and (17), or by
designing some fallback control strategies.

2The video is available in https://youtu.be/BrJSRlAJaX4.

Fig. 4. Snapshots of simulation experiments for the gap crossing and
stepping stone scenarios with the Aliengo robot. The red spheres denote
the reference stepping locations, while the green ones represent stepping
stones. The black trajectories are the outputs of our MPC controller. The
resulting footstep placements deviate considerably from the corresponding
references and allow the robot to avoid 32 cm wide gaps (left) and step on
isolated footholds (right).

Fig. 5. Two Laikago quadruped robots controlled using a centralized MPC
strategy in simulation. The robot on the left is executing a walking gait,
whereas the one on the right is performing a flying trot. The reference
trajectories are denoted by blue spheres, and the optimized ones are
represented by green spheres: the latter deviate significantly from the former
to prevent the robots from colliding.

Finally, we extend our framework so that the state vector
contains the positions of two robots, and we couple the
solutions for the two subsystems by adding the following
collision avoidance term to the objective function:

Lca(X) :=
NX

k=0

S�1(krak � rbkk2) ,

where rak and rbk are the states of the two robots at time step
k, respectively. This cost term ensures that the robots keep a
distance of at least 1m from each other – see Figure 5. As
shown in the supplementary video, our NMPC framework is
able to control the multi-robot system in real time by solving
a single OCP.

IV. CONCLUSION AND FUTURE WORK

Our NMPC scheme facilitates the implementation of ro-
bust controllers for various quadrupedal locomotion tasks.
We can easily integrate different nonlinear dynamics models
into our framework. We leave a complete demonstration with
different models and more comprehensive analysis for future
work. Our immediate next step is to verify our formulation of
the SRBM and test it on hardware. Furthermore, we intend
to compare our method to other state-of-the-art nonlinear
control frameworks.

https://youtu.be/BrJSRlAJaX4
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