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Abstract— This work presents a simplified model-based tra-
jectory optimization (TO) formulation for planning motions on
quadruped mobile manipulators that locomote while carrying
heavy payload. The formulation considers both robot and
payload dynamics and simultaneously plans locomotion and
payload manipulation trajectories. Thanks to the heavy payload
manipulation planning the resulted payload-aware planner
is less prone to leg singular configurations in kinematically
demanding motions compared to its locomotion-only counter-
part. The method is validated on the quadruped bi-manual
CENTAURO robot carrying a payload that consists 85 % of
the arms’ payload capacity and exceeds 15 % of the robot’s
mass.
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I. MOTIVATION
Great progress in motion planning and control of legged

robots has enabled deployment of quadruped platforms for
mapping and exploration of real-world environments [2].
Despite this achievement, the use of quadruped robots in
a wider range of tasks like mobile manipulation remains
an open challenge. In contrast to aerial robots, quadruped
manipulators are more promising for all-terrain applications
that require executing manipulation actions with large phys-
ical interaction due to the legged contact and articulation.
This promise has in no case been fulfilled so far since very
few works [3]–[9] have addressed the problem of simultane-
ously performing locomotion and manipulation tasks on real
quadruped manipulators. Among them, only [8], [9] optimize
locomotion and manipulation motions concurrently in the
planning stage.

Among other challenging tasks, quadruped manipulators
promise robotizing heavy payload transportation in non-flat
terrain. This task poses significant challenges to the robot,
namely compromising stability, forcing actuator saturation
and reaching joint limits. As a result, despite the existence of
numerous quadruped manipulators [3]–[5], [10]–[13], their
deployment and feasibility to maintain locomotion while
carrying heavy payload (more than 15 % of the robot’s mass)
has been either relatively unexplored or compromised by
generating motions only for the lower body of the robot [14].
This work introduces a model-based TO formulation that
optimizes locomotion, manipulation and payload dynamics.
The proposed framework is validated on the quadruped bi-
manual CENTAURO robot while carrying 17 kg payload, as
shown in Fig. 1.
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Fig. 1. The CENTAURO robot walking while carrying 17 kg payload.

II. TRAJECTORY OPTIMIZATION FORMULATION

The TO framework is formulated by transcribing the
continuous optimization problem in a constrained Nonlinear
Programming (NLP) problem with a finite set of decision
variables. The formulation plans both locomotion and ma-
nipulation trajectories for the task of carrying heavy payload
with known mass1. Henceforth, the TO framework is referred
as payload-aware planner. The formulation optimizes the
CoM state zzz(t) =

[
rrr(t) ṙrr(t) r̈rr(t)

]T
(where rrr(t) is the

CoM position), the CoM jerk, the motion of the arm EEs
as well as the forces fff i(t) at all (feet and arm) EEs for
the desired stride (i.e. feet EE trajectories are defined by the
user). The CoM position is parameterized as cubic spline,
the EE forces as piecewise linear while Cubic Hermite Pa-
rameterization (CHP) [15] is used for the arm EEs position.

A. The robot model

The robot is modeled using the Single Rigid Body Dynam-
ics (SRBD) model with point contacts. The SRBD model is
described by the following equation:[

ṖPP

L̇LL

]
=

[
mggg +

∑ncont

i=1 fff i∑ncont

i=1 (pppi − rrr)× fff i

]
(1)

where ṖPP = m · r̈rr and L̇LL are the derivatives of the linear and
angular momentum, respectively, ggg is the gravity vector, pppi
denotes the feet EE position vectors, m is the robot mass
and the number of contacts ncont = 6 (since both feet and
arm EEs can make contact with the environment). Since base

1The mass of a grasped payload can be estimated through force estimation
at the EE using a wrist force/torque sensor or by exploring the joint torque
sensing available on the arm.



Fig. 2. Visualization of the CENTAURO robot with the arm EE box
workspaces (left). The simplified dynamic model considered by the payload-
aware planner (right). For the sake of clarity, the position vector pppi with
respect to (wrt) the inertial frame I is depicted for one EE.

angular motion is not optimized, constant angular momentum
is, further, assumed L̇LL = 000. In the following section it is
discussed how the formulation is made robust against the
significant assumptions of the SRBD model.

B. Locomotion-related behavior

The CoM state and its derivative are related with the
CoM jerk through an equality constraint that describes a
triple integrator system. The unilateral and friction pyramid
constraints are imposed for the feet in contact as inequality
constraints. To compensate for the assumptions of the SRBD
model (e.g. massless limb assumption), large stability bounds
are imposed by setting a positive lower bound for the normal
component of the force at each foot in contact. Finally, the
initial CoM state, z0z0z0 is enforced while the final CoM position
is bounded within a desired region (centered around the
nominal CoM position on the final footholds). Final CoM
velocity and acceleration are bounded to zero.

CoM jerk and feet EE force components fffxy
i are penalized

in order to avoid oscillatory trajectories and favor forces
close to contact normals, respectively. Finally, a penalty cost
is included for the CoM position with the form:

Jr = ∥rrr − (pmeanpmeanpmean + crefcrefcref )∥2 (2)

where pmeanpmeanpmean = 1
ncont

∑ncont

i=1 pppi is the mean of the feet EE
position vectors (regardless of contact state) and crefcrefcref is a
robot-specific vector with only vertical component (so that
the CoM reference point is above pmeanpmeanpmean). This way motions
with the CoM horizontal projection close to the geometric
center of the feet EE formed polygon are favored.

C. Payload manipulation-related behavior

Under the presence of payload, the robot arms are in
continuous contact with the payload, therefore, the motion
of each payload is identical to the motion of the arm EE
that carries it. The motion planner accounts for each grasped
payload dynamics by considering a point mass model with
the following equality constraint:

mpay · p̈payp̈payp̈pay = mpay · ggg + fffpaypaypay,i (3)

where p̈payp̈payp̈pay = p̈ppi is the payload acceleration (identical to the
arm EE’s), mpay is the payload mass and fffpaypaypay,i = −fff i is
the force exerted to the payload (equal and opposite to the
arm EE force). Subscript i ∈ {5, 6} refers to the arm EEs.

The arm EE trajectories are constrained to remain within
boxes (shown in Fig. 2) that are centered at the nominal
position wrt the CoM p̄ppri and aligned with the inertial frame.
This inequality constraint for each arm EE is described as:

|(pppi − rrr − p̄ppri)
T ĵ̂ĵj| ≤ 0.5 · beebeebee

T ĵ̂ĵj (4)

where ĵ̂ĵj ∈ {x̂̂x̂x, ŷ̂ŷy, ẑ̂ẑz} are the unit vectors along the inertial
directions and beebeebee is a 1 × 3 array matrix including the
box dimensions. The two workspaces are selected to overlap
with each other in order to provide the solver with more
freedom and self-collision avoidance is ensured with another
constraint that requires the distance between the two EEs
along the y inertial direction to be greater than a safety
threshold.

Initial position, zero initial and final velocity of the arm
EEs are enforced while a constraint for arm EE CHP
acceleration equality at polynomial junctions is included.

Finally, the magnitude of each arm EE force is bounded
with a box constraint, which results in bounding the cor-
responding arm EE acceleration. This is because each arm
EE and the corresponding payload are subject to the same
acceleration, which is coupled with the force at the arm EE
through the payload dynamics (3). Each arm EE force box
is centered at the payload’s weight vector mpay · ggg, thus the
constraint has the form:

|(fff i −mpay · ggg)T ĵ̂ĵj| ≤ 0.5 · bfbfbfT ĵ̂ĵj (5)

where bfbfbf is a 1×3 array matrix including the box dimensions.
The larger the bounding boxes are, the more dynamic arm
motions the framework is permitted to plan.

For each arm a cost is added to favor motions with
small EE acceleration (among the ones specified through
(5)). This cost has analytical form and penalizes the integral
of the squared acceleration polynomial. The latter can be
reconstructed from the acceleration at the knots based on
the selected parameterization and, thus, is available to the
planner. The analytical cost penalizes acceleration through
the whole spline and not just at the knots.

III. WHOLE-BODY CONTROLLER (WBC)

The CoM and EE position trajectories are fed to a WBC
that is based on hierarchical optimization and inverse kine-
matics (IK). The WBC is developed within the framework
of [16] and is responsible for generating the motions for all
the robot joints. Joint trajectories are then fed to the low-
level joint position controllers. The structure of the WBC
(stack of tasks) is shown in Table I. It is worth mentioning
that sufficient control authority is assumed and joint torque
limits are not considered, which can be a limitation for very
dynamic motions.



TABLE I
WBC TASKS AND CONSTRAINTS

Priority Tasks
1 Feet position tracking
1 CoM position tracking
2 Arms position tracking
3 Postural task

Constraint Joint position limits
Constraint Joint velocity limits

IV. RESULTS

The framework is tested in a variety of simulation and
experimental scenarios and compared with its locomotion-
only counterpart. The latter is derived by excluding
any manipulation-related quantity (decision variables, con-
straints, costs) referred in Sec. II, considering payload as
part of the robot model and generate motion only for the
joints of the robot’s lower body.

A. Kinematically demanding motions

Under heavy payload, large CoM motions may be neces-
sitated in order to compensate for the payload effect. In
kinematically demanding motions, e.g. large strides where
swing distance is large, swing leg may be outstretched and
reach its workspace kinematic limit, a configuration known
as boundary singularity. The manipulability metric (6) is
used to evaluate the distance of a leg configuration from
singularity.

w(qqq) =
√

det(JuJuJu(qqq)JuJuJuT (qqq)) (6)

where JuJuJu is the linear velocity jacobian of the foot EE wrt the
base link while the joint position vector qqq is computed by the
WBC. Due to the optimization of the payload manipulation
in the NLP formulation and, consequently, the deployment
of the robot’s upper body the payload-aware planner leads
to higher, compared with the locomotion-only case, feet EEs
manipulability.

In Fig. 3 snapshots of a lateral stepping experiment with
8.5 kg payload at each arm (85 % of the arm’s payload
capacity, total 15.1 % of the robot mass) are shown. The
generated trajectories are accurately tracked from the real
hardware such that the real FR leg manipulability remains
higher than the one planned in the locomotion-only case.

Fig. 3. Snapshots of lateral walking experiments on flat terrain (left) and
FR leg manipulability comparison based on experimental and simulation
data on the payload-aware and locomotion-only cases, respectively. (right)

Fig. 4. CENTAURO negotiating non-flat terrain while carrying 20 kg
payload in simulation. a) 0.2 m gap, b) 0.25 m gap, c) 0.3 m height platform
and d) staircase. Motion plans from consecutive TOs with 4 step horizon
are replayed. The attached green ball EEs consist the attached payloads.

B. Non-flat terrain

Larger motions are synthesized by running TO with 4 step
horizon and replaying them consecutively on the robot. Using
the presented planner CENTAURO is shown to negotiate
gaps, a 0.3 m height platform (36.8 % of leg’s length) and
a staircase in simulation, as shown in Fig. 4.

On real hardware, stepping up on a 0.3 m height platform
(through multiple offline TOs), is shown in Fig. 52. The
wheeled capabilities of the robot are not used in order to
stress the efficiency of the proposed framework. It is noted
that the used boxes in (4) are set more conservative than in
simulation due to the larger size of the real attached payload.
Moreover, a larger stability bound (mentioned in Sec. II-B)
is used to increase robustness against modelling inaccuracies
between the simulated and real robot model.

In Fig. 5 the planned and estimated normal to the contact
plane force components during the platform stepping up
experiment are depicted for the feet EEs. The estimated
forces follow in general the trend of the planned ones. The
presented force tracking errors are mainly due to the fact that
forces are not explicitly tracked, joint position control is used
(there is force redundancy) and there are estimation errors.
Finally, the estimated force components in Fig. 5 often reach
low values at each leg when the one diagonal to it is swinging
due to the momentum produced by the joint velocities when
swinging fast a robot leg.

C. Computational efficiency

In Table II (OFF row) the computational load of the in-
troduced framework is presented for planning three different
motion scenarios: 4 steps of 0.25 m along the longitudinal
robot direction on flat terrain (a single TO with 13 sec.
horizon), 4 steps of 0.25 m along the lateral robot direction
on flat terrain (a single TO with 13 sec. horizon) and the
step-up motion of Fig. 4c (multiple replayed TOs with total
duration 46 sec.). The time needed for the optimal solution is
more than 30 times shorter than the planning horizon, namely
∼ 400 ms for 13 sec. and ∼ 1.4 s for 46 sec. of motion,

2The video of the experiment is included in the accompanying video
which is also available in https://youtu.be/gzm46wSfWAI.



Fig. 5. Snapshots of CENTAURO stepping up on a 0.3 m height platform
(top), planned (blue) and estimated (red) normal force component at feet
EEs (bottom). Shaded regions denote swing periods.

respectively. The above mean values were calculated from 5
samples. Zero initial guess was provided to the solver.

Based on the achieved performance the formulation can,
also, run in a receding horizon fashion. Continuous walking
with the strides of Table II and the step up motion is planned
online at 5 Hz with 4 sec. horizon. The implementation pro-
vides insight about the potentiality of the approach for online
planning. Initial guess consisted of the previous solution for
the common knots and the last available knot solution for the
remaining knots is provided. The mean convergence time for
a solution, calculated from multiple trials, is shown in Table
II (RH row). Although the horizon is of considerable length
convergence time is more than 50 times shorter (75 times for
the step up motion), which renders future implementations
of higher planning frequency and NLP resolution feasible.

TABLE II
PAYLOAD-AWARE OFFLINE (OFF) AND RECEDING HORIZON (RH) -

MEAN CONVERGENCE TIME (ITERATIONS)

Longitudinal [ms] Lateral [ms] Step up [s]
OFF 375.34 (44) 399.44 (46) 1.41 (194)
RH 60.43 (15) 64.53 (16) 0.053 (13)

V. CONCLUSION

We present results of a model-based TO formulation on the
quadruped bi-manual CENTAURO robot for heavy payload
transportation tasks. The proposed framework co-optimizes
locomotion and payload manipulation and is combined with
an IK-based WBC. The framework demonstrates efficiency
on flat and non-flat terrain under payload that exceeds 15
% of the robot’s mass and overcomes its locomotion-only
counterpart which can be poor for kinematically demanding
motions. The presented formulation can be, as well, used for
online receding horizon planning.
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