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Abstract— This abstract presents methods that reduce the
computational demand of including second-order dynamics
sensitivity information into optimization algorithms for robots
in contact with the environment. The work extends a previous
study on unconstrained whole-body motion planning. A full
second-order Differential Dynamic Programming (DDP) algo-
rithm is presented where all the necessary dynamics partial
derivatives are computed with lower computational complexity
than conventional DDP methods. Compared to using a first-
order approximation, the second-order partials more accurately
represent the dynamics locally, but since they are tensorial and
expensive to compute, they are often ignored. This work illus-
trates how to avoid the need for computing the derivative tensor
by instead leveraging reverse-mode accumulation of derivatives.
We also exploit the structure of the contact-constrained dy-
namics to further accelerate these computations. The relative
performance of the proposed approach is benchmarked on a
simulated model of the MIT Mini Cheetah executing a bounding
gait.

Paper Type – Original Work

I. INTRODUCTION

In comparison to their biological counterparts, legged
robots are yet to be as mobile and dexterous. Animals devise
and execute fast and fluid movements on the fly despite their
numerous degrees of freedom (DoF). This capability is most
beneficial in new, unknown, and uneven terrain – where the
fast and fluid movements are tailored to the novel context.
The scientific gap for legged robots to achieve this goal is,
in part, due to challenges from the robot’s highly non-linear
dynamics and the curse of dimensionality from many DoFs.
A common approach in the literature is to cast the robotic
locomotion problem as a trajectory optimization problem,
solved in a receding horizon fashion. The computation of
an optimal control tape then, ideally, allows for the robot
to achieve a desired motion while maintaining energetic
efficiency and respecting constraints.

Whole-body motion planning considers a finite-horizon
trajectory optimization problem posed over the full dynamics
of the robot, enabling the synthesis of complex desired
motions. While the computational burden of considering
the full model is significant, continuous gains in compu-
tational power have enabled a steady transition to whole-
body trajectory optimization. For example, the authors in
[1] use a whole-body trajectory optimizer based on Differ-
ential Dynamic programming (DDP) to control a 22-DoF
humanoid robot. Rather than optimizing all control variables
at once, DDP exploits the sparsity of the OCP and solves a
sequence of smaller optimization problem at each point along

This work was supported in part by NASA Award 80NSSC21K1281.
1 Authors are with the Department of Mechanical Engineer-

ing, University of Notre Dame, Notre Dame, IN 46556, USA
{jnganga,pwensing}@nd.edu

the horizon. DDP also outputs a locally optimal feedback
policy, which can be used to handle disturbances [2]. As
originally described [3], DDP does not handle constraints.
However, several recent modifications to DDP that address
control limits [4] and general state/control constraints [5], [6]
have been proposed. Further, the work of [5], [7]–[9] have
extended the algorithm from smooth dynamical systems to
hybrid systems that have sequences of smooth modes with
reset maps determining transitions between them. This work
considers the extension of DDP to systems undergoing rigid
contacts with the environment in the same fashion as [7].

In its originally proposed form, DDP considers a second-
order approximation of the dynamics model. However, in
practice (e.g., [1], [8], [10]) many researchers have opted to
use a first-order dynamics approximation due to its faster
evaluation time. While the second-order dynamics infor-
mation retains higher fidelity to the full model locally, it
is represented by a rank three tensor and is expensive to
compute. Our previous work [11] avoids the evaluation of the
dynamics derivative tensor for the DDP algorithm for smooth
dynamical systems. In this work, we extend that study [11]
to systems undergoing rigid contacts with the environment.

II. BACKGROUND: TRAJECTORY OPTIMIZATION

Consider a rigid-body model in contact with the envi-
ronment at some known set of points. Using generalized
coordinates q, the dynamics of the model are given by:[

H −J⊤
c

−Jc 0

]
︸ ︷︷ ︸

K

[
q̈
λ

]
︸︷︷︸
ν

=

[
S⊤τ + h

J̇cq̇

]
︸ ︷︷ ︸

Ψ

(1)

where H and S denotes the inertia matrix and selector
matrix respectively. The term h is the joint-space bias vector
and it groups the Coriolis, centrifugal, and gravitational
components. Jc and λc represent the contact Jacobian and
the corresponding contact forces. Overall, (1) is known as
the contact-constrained dynamics with the first row of (1)
representing inverse dynamics in the conventional sense and
the second row representing contact acceleration constraint.
The solution for (1) can be given as[

F
g

]
≜ ν = K−1Ψ . (2)

where F represents the realized continuous joint acceleration
and g is the realized contact force functions.

A. Hybrid Systems DDP Algorithm

Consider a model with state x = [q⊤ q̇⊤]⊤, control input
τ , and ground reaction forces λ. The continuous state and
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control trajectories can be discretized such that

xk+1 = f(xk,uk) ≜ xk + h

[
q̇

F(q, q̇, τ )

]
(3)

λk = g(xk,uk) , (4)

where h is the integration stepsize.

DDP is used to solve an OCP with m modes such that the
cost function is a summation across each mode given as:

J(U) =

m∑
i=1

[
Φi(xN ) +

Ni−1∑
k=0

ℓi(xk,uk,λk)
]
. (5)

where ℓi is the running cost and Φi is the terminal cost
incurred at the end of a horizon N . To obtain an optimal
trajectory, (5) is minimized across modes as

min
U

J(U) (6a)

subject to xk+1 = fi(xk,uk) (6b)
λi = gi(xk,uk) (6c)
Constraints (6d)

where fi and gi denote the dynamics and ground reaction
force functions for each mode. Equation (6d) groups several
constraints such as switching constraints, torque limits, and
contact force constraints.

DDP solves (6) by optimizing a control policy at each
time point, and working backwards in time using Bellman’s
principle [12]. This process recursively provides a value
function approximation as:

V ⋆
k (xk) = min

uk

[
ℓk(xk,uk, g(xk,uk)) + V ⋆

k+1(f(xk,uk))︸ ︷︷ ︸
Qk(uk,xk)

]

where V ⋆
N (xN ) = Φ(xN ) ,

(7)

and where the function, Qk(x,u), captures the cost to go
when starting in state xk at time k, taking action uk, and then
acting optimally thereafter. In solving (7), we consider the
differential change to Qk around a nominal state-control pair
x̄k and ūk such that δQk(δxk, δuk) = Qk(x̄k + δxk, ūk +
δuk)−Qk(x̄k, ūk). The second-order approximation of the
Q-function leads to its first- and second-order partials as

Qx = ℓx + f⊤x V ′
x + g⊤x ℓλ

Qu = ℓu + f⊤u V ′
x + g⊤u ℓλ (8)

Qxx = ℓxx + f⊤x V ′
xxfx + g⊤x ℓλλgx +

[
V ′
x

ℓ⊤λ

]⊤ s
fxx
gxx

{

Quu = ℓuu + f⊤u V ′
xxfu + g⊤u ℓλλgu +

[
V ′
x

ℓ⊤λ

]⊤ s
fuu
guu

{

Qux = ℓux + f⊤u V ′
xxfx + g⊤u ℓλλgx +

[
V ′
x

ℓ⊤λ

]⊤ s
fux
gux

{

where J·K denotes a tensor term, which is often ignored [1],
[13], [14]. Further, [·]⊤ J·K implies a tensor contraction with
a vector. Minimizing (7) over δuk attains the incremental

control

δu⋆
k = argmin

δuk

δQk(δxk, δuk) (9)

This process is repeated until a value function approximation
is obtained at time k = 0, constituting the backward sweep
of DDP. Following this backward sweep, a forward sweep
proceeds by simulating the system forward in time under the
incremental control policy (9) resulting in a new state-control
trajectory [3]. The sweeps are repeated to convergence.

B. Dynamics Function Realization

The inverse dynamics (ID) of a rigid-body system is given
by the recursive Newton Euler Algorithm (RNEA) as:

τ = RNEA(model,q, q̇, q̈,ag)
= H(q)q̈+ h(q, q̇) ,

with ag the gravitational vector. The RNEA [15], [16] can
be evaluated with O(n) complexity where n is the number
of DoFs in the model. The calculations in the RNEA include
the velocities and accelerations of all bodies, including those
in contact. These quantities will indeed prove important later
on in this development.

In [11], a refactoring of the RNEA algorithm was intro-
duced to present a modified RNEA (mRNEA) that outputs
µ⊤τ where µ is any fixed vector. The resulting mRNEA
is an O(n) one-pass algorithm. Toward extending that al-
gorithm for use with contact-constrained dynamics, we first
recognize that contact-constrained dynamics involve contact
forces. As such, we extend [11, Algorithm 1] to include the
effects of the contact forces. Second, we extend the method
to add an output from the acceleration of contact bodies.

µ⊤τ + π⊤ac = mRNEAc(q, q̇, q̈,ag,λ,µ,π)

= µ⊤[H(q)q̈+ h(q, q̇)− J⊤
c λ
]

+ π⊤
[
Jcq̈+ J̇cq̇

]
.

where, µ and π are fixed vectors. The utility of the con-
tact acceleration term will become clear in the subsequent
section, however, its presence can be intuitively motivated
by the prominence of the contact acceleration in (1). The
resulting algorithm is called the modified RNEA for contacts
(mRNEAc), and is presented in Algo. 1 using rigid-body
dynamics notation from [16]. The mRNEAc is still an
O(n) one-pass algorithm. We proceed to demonstrate the
importance of this new algorithm for accelerating DDP.

III. REDUCING COMPLEXITY IN HYBRID SYSTEMS DDP

Within DDP, the computations of the dynamics partials
represent the most computationally intensive operations. We
present an approach for reducing the computational com-
plexity of evaluating the tensorial portions of the Q-function
partials in (8).

A. Conventional Partials

Within DDP, we need the first- and second-order partials
of (2). Let z and y represent q, q̇, or τ . As such, we can use
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Algorithm 1 Modified RNEA Algorithm for Contacts
Require: model,q, q̇, q̈,ag,λ,µ,π

1: v0 = 0,a0 = −ag,w0 = 0, s = 0
2: for i = 1 to N do
3: vi =

iXp(i) vp(i) +Φi q̇i

4: wi =
iXp(i) wp(i) +Φi µi

5: ai =
iXp(i) ap(i) + (vi×)Φiq̇i +Φiq̈i

6: Fi = Iiai + (vi×∗) Iivi − λi

7: s+ = w⊤
i Fi + π⊤

i ai

8: end for
9: return [s = µT τ + π⊤ac]

Automatic Differentiation (AD) tools once on ν ≜ K−1Ψ
to obtain ∂ν

∂z . For a fixed number of contacts, this operation
can be implemented to scale with O(n2) complexity. This
complexity is the lowest possible, since the operation pro-
vides the partials of the n entries of ν w.r.t. the n entries of
the z vector.

For second-order partials in DDP, AD tools can be used
twice on ν ≜ K−1Ψ to attain

r
∂2ν
∂z∂y

z
. In using AD tools

twice, ∂2ν
∂z∂y requires an O(n3) operation that considers the

partials of the n entries of ν w.r.t. the n2 entries of the z and
y vectors. Within the DDP context, the second-order partials
will be contracted with fixed vector γ⊤ = [V ′⊤

x ℓ⊤λ ]
⊤ (see

(8)) from the left. The resulting approach is denoted Tensor
DDP. We aim to reduce the computation complexity for these
second-order partials.

B. Proposed Approach: mRNEAc Partials

Consider the partials of Kν = Ψ. The first-order partials
of Kν = Ψ can be given as

s
∂K

∂z

{
ν +K

∂ν

∂z
=

∂Ψ

∂z
,

where we can then solve for ∂ν
∂z . The second-order partials

can be given by
s
∂2K

∂z∂y

{
ν +

s
∂K

∂z

{
∂ν

∂y
+

s
∂K

∂y

{
∂ν

∂z
+K

s
∂2ν

∂z∂y

{
=

s
∂2Ψ

∂z∂y

{
. (10)

We consider the rearrangement of (10) and the contraction
of the second-order partials with the fixed vector γ⊤ as
needed within DDP. We focus exclusively on the second-
order partials w.r.t. q, and rewrite (10) as:

γ⊤
s

∂2ν

∂q∂q

{
= γ⊤K−1︸ ︷︷ ︸

ξ⊤

s
∂2Ψ

∂q∂q
− ∂2K

∂q∂q
ν − (A⊤ +A)

{
,

where A ≜

t
∂

∂q

(
K

∂ν

∂q

)|

(11)

and where ξ⊤ contracts the tensor terms to a matrix.
We consider (11), where rather than lumping several

quantities into K, ν, and Ψ, we separate out the dynamics

functions into their constituent terms and partition ξ⊤ =
[ξτ ξa]

⊤. This enables us to rewrite (11) as:

γ⊤
s

∂2ν

∂q∂q

{
= T1 +T2 +T⊤

2 (12)

T1 = −ξ⊤τ

s
∂2

∂q∂q

[
Hq̈+ h− J⊤

c λ
]{

(13)

− ξ⊤a

s
∂2

∂q∂q

[
J̇cq̇+ Jcq̈

]{
T2 = −ξ⊤τ

s
−∂H

∂q

∂q̈

∂q
− ∂J⊤

c

∂q

∂λ

∂q

{
− ξ⊤a

s
∂Jc

∂q

∂q̈

∂q

{

Herein, we can efficiently compute all the terms in (12)
without the tensor operations and in lower computational
complexity. Consider that, with appropriately chosen inputs
to the mRNEAc(·), we can attain all the necessary terms as

T1 =
∂

∂q

[
∂

∂q
mRNEAc(q, q̇, q̈,ag,λ, ξτ ,π)

]
T2 =

∂

∂q
mRNEAc

(
q, 0,

∂q̈

∂q
, 0,

∂λ

∂q
, ξτ ,π

)
The term T1 can be calculated in O(n2) complexity.

First, reverse-mode AD tools can be used to compute
∂
∂qmRNEAc (·) in O(n), and then AD tools can be used
again for the partial of that result, setting the complexity at
O(n2). The term T2 can be calculated in O(n2) complexity
by first running mRNEAc n times with the n columns of
∂q̈
∂q as input. Taking the partials of that result using AD tools
sets the complexity of this operation at O(n2).

The effect is that all the second-order partials of the
dynamics function are calculated efficiently in O(n2) and
without resorting to any tensor operations. Overall, this result
reduces the computational complexity of taking the second-
order partials needed for DDP compared to an approach
based on tensor contraction.

IV. RESULTS

Dynamics Partials

First, we evaluate the proposed methods on an under-
actuated n−link pendubot model whose last link is pinned to
the ground through a pin joint. The n−link pendubot model
allows us to test the scalablity of the proposed methods with
an increasing number of DoFs. This work was implemented
in MATLAB alongside CasADi [17], which allows for rapid
and efficient testing of AD approaches. As shown in Fig. 2,
the evaluation of the second-order partials using Tensor
DDP took the longest time. The computation of the second-
order partials via mRNEAc DDP showed a order reduction
compared to Tensor DDP (as given by a reduction of the
slope by more than one on the loglog plot). Computation
time benefits were especially more apparent for systems with
a higher number of DoFs, indicating the potential of the
proposed methods to include second-order information into
trajectory optimization algorithms for legged robots.
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Fig. 1. Snapshots of the resulting optimized motion by DDP.

Fig. 2. The computation time of the dynamics partials of using the proposed
methods of the pinned pendubot model.

Trajectory Optimization

Next, we consider trajectory optimization for a bounding
gait with a planarized quadruped. The model of the 2D
quadruped has 5 links (torso, and 2 links per leg) and a
state dimension of n = 14. The bounding sequence is
encoded via the design of the running and terminal costs
in each bounding mode. The resulting motion following the
trajectory optimization by DDP is illustrated in Fig. 1. The
robot starts in the back-stance mode and runs forward at a
speed of 0.5m/s.

Further, we consider several instances of adding random
noise to study the timing advantages of the proposed DDP
approach. Different realizations of Wiener process noise were
added to the optimized state and control trajectories. Those
modified trajectories then used as initial trajectories, and
the algorithm was optimized for 50 iterations. As shown
in Fig. 3, mRNEAc on average took less time (approx.
5.7111 times less) as compared to the Tensor DDP. The
reduced effort to add second-order information and reduced
optimization time of mRNEAc DDP indicates the potential
of the proposed approach over conventional approaches.

V. DISCUSSION

The proposed DDP approach shows an improvement in
computational complexity and runtime of DDP as compared
to the conventional DDP approach. The computational com-
plexity of the proposed method has a lower polynomial
degree (O(n2)) than that of Tensor DDP (O(n3)). This
reduction was achieved by the use of the mRNEAc algo-
rithm, which allows us to cheaply compute the contact-

constrained dynamics sensitivities using reverse-mode AD.
While second-order dynamics information is often ignored in
literature, the outcomes of this work suggest its consideration
for broader inclusion in DDP.

REFERENCES

[1] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of com-
plex behaviors through online trajectory optimization,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 4906–
4913, 2012.

[2] R. Grandia, F. Farshidian, R. Ranftl, and M. Hutter, “Feedback
MPC for torque-controlled legged robots,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 4730–4737, 2019.

[3] D. Mayne, “A second-order gradient method for determining optimal
trajectories of non-linear discrete-time systems,” International Journal
of Control, vol. 3, no. 1, pp. 85–95, 1966.

[4] Y. Tassa, N. Mansard, and E. Todorov, “Control-limited differential
dynamic programming,” in IEEE International Conference on Robotics
and Automation, pp. 1168–1175, 2014.

[5] G. Lantoine and R. P. Russell, “A hybrid differential dynamic pro-
gramming algorithm for constrained optimal control problems. part 1:
Theory,” Journal of Optimization Theory and Applications, vol. 154,
no. 2, pp. 382–417, 2012.

[6] T. Howell, B. Jackson, and Z. Manchester, “Altro: A fast solver
for constrained trajectory optimization,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 7674–7679, 2019.

[7] H. Li and P. M. Wensing, “Hybrid systems differential dynamic
programming for whole-body motion planning of legged robots,” IEEE
Robotics and Automation Letters, vol. 5, no. 4, pp. 5448–5455, 2020.

[8] N. J. Kong, G. Council, and A. M. Johnson, “iLQR for piecewise-
smooth hybrid dynamical systems,” in IEEE Conference on Decision
and Control (CDC), pp. 5374–5381, 2021.

[9] Y. Tang, X. Chu, and K. Au, “Hm-ddp: A hybrid multiple-shooting
differential dynamic programming method for constrained trajectory
optimization,” arXiv preprint arXiv:2109.07131, 2021.

Fig. 3. Timing comparison of the proposed method as compared to the
conventional method

4



[10] W. Li and E. Todorov, “Iterative linear quadratic regulator design for
nonlinear biological movement systems.,” in ICINCO (1), pp. 222–
229, Citeseer, 2004.

[11] J. Nganga and P. M. Wensing, “Accelerating second-order differential
dynamic programming for rigid-body systems,” IEEE Robotics and
Automation Letters, 2021.

[12] E. V. Denardo, Dynamic programming: models and applications.
Courier Corporation, 2012.

[13] R. Budhiraja, J. Carpentier, C. Mastalli, and N. Mansard, “Differential
dynamic programming for multi-phase rigid contact dynamics,” in
IEEE-RAS Int. Conf. on Humanoid Robots, pp. 1–9, 2018.

[14] R. Budhiraja, Multi-body Locomotion: Problem Structure and Efficient
Resolution. PhD thesis, Institut national des sciences appliquées de
Toulouse, 2019.

[15] D. E. Orin, R. McGhee, M. Vukobratović, and G. Hartoch, “Kinematic
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