
Impact-Invariant Running on the Cassie Bipedal Robot

William Yang and Michael Posa

Abstract— Impact-invariant control is a general framework
for adapting model-based controllers for robots undergoing
impacts. The framework projects the tracking objectives into
a subspace that is invariant to impact forces, thus resulting
in a controller that is robust to uncertainties in the impact
event while minimally sacrificing control authority. In this
work, we apply impact-invariant control to a SLIP-inspired
running controller for the bipedal robot Cassie. This, to our
knowledge is the first example of a model-based running
controller demonstrated on hardware for Cassie. We detail our
controller framework and the effect of the impact-invariant
projection on the stability of the controller.
Paper Type – Original Work

I. INTRODUCTION

There has recently been considerable progress on walking
controllers for bipedal robots demonstrating full use of the
passive dynamics [1] and impressive robustness [2]. While
walking is a suitable locomotive gait in most scenarios,
exploration of more dynamic gaits is necessary to unlock
the full locomotive potential of bipedal robots.

Running not only enables movement at higher speeds,
but also generally results in more efficient motions at those
speeds [3]. While running has been demonstrated on many
bipedal robotic platforms including MABEL [4], ATRIAS
[5], as well as Atlas from Boston Dynamics, running has not
yet been demonstrated on the 3D bipedal robot Cassie except
through reinforcement learning (RL) [6]. Cassie presents a
particularly challenging control problem when the motion
includes an aerial phase, because its relatively low inertia
pelvis coupled with a high degree of underactuation makes
it difficult to stabilize.

Model-based controllers should in principle be well suited
for designing running motions because they have the ability
to directly incorporate known model details and specify
desired behaviors in an intuitive manner. However, model-
based controllers are often brittle to model uncertainties as
they assume perfect knowledge of the robot dynamics. One
particularly sensitive source of model uncertainty is at the
impact event, where the robot undergoes rapid changes to its
velocity over a short period of time. Our recent work [9] has
shown that projecting the robot state to an impact-invariant
subspace enables controllers to avoid providing erroneous
feedback commands caused by sensitivity to the impact event
while minimally sacrificing control authority. In that previous
work, we demonstrate the benefits of the projection on

This material is based upon work supported by the National Science
Foundation Graduate Research Fellowship Program under Grant No. DGE-
1845298

The authors are with the GRASP Laboratory, University of Pennsylvania,
Philadelphia, PA 19104, USA {yangwill, posa}@seas.upenn.edu

Fig. 1. Gait tiles of the bipedal robot Cassie executing a running gait in
a controlled laboratory setting.

improving the tracking performance on walking and jumping
motions.

In this work, we incorporate the impact-invariant projec-
tion into an inverse dynamics running controller with a SLIP-
inspired pelvis trajectory and Raibert footstep regulator as the
footstep planner. In doing so, we showcase the benefits of
the impact-invariant projection on a more dynamic gait.

The contributions of this paper are as follows:
• Demonstration of the first model-based running con-

troller for the bipedal robot Cassie
• Analysis of the effect of impact-invariant projection on

a dynamic running gait
We describe the robot model and give an overview of

impact-invariant control in II. We discuss the model-based
controller formulation, including the generation of the ref-
erence trajectories, in III. The running controller is then
implemented on the physical robot and the effects of the
projection are shown in IV. Finally, comments about the
successes and limitations of this controller are discussed in
V.

II. BACKGROUND

A. Model Dynamics

Cassie is a 3D bipedal robot with built-in compliance
located in the knee and ankle springs. We model Cassie’s
dynamics using conventional Lagrangian rigid body dynam-
ics. The robot’s state x ∈ R45 = [q; v] contains the robot’s
positions q ∈ R23 and velocities v ∈ R22 and is expressed
in generalized floating-base coordinates. The dynamics are



derived using the Euler-Lagrange equation and expressed in
the manipulator equation:

M(q)q̈ + C(q, q̇) + g(q) = Bu+ Jλ(q)Tλ, (1)

where M ∈ R22×22 is the mass matrix, C and g are
the Coriolis and gravitational forces respectively, B is the
actuator matrix that maps the vector of actuator inputs
u ∈ R10 to generalized forces, and Jλ and λ ∈ R14 are
the Jacobian of the holonomic constraints and corresponding
constraint forces respectively. The Jacobian of the holonomic
constraints includes the Jacobian for the loop closure con-
straint of the knee linkages present on each leg Jh as well as
the Jacobian for the contact constraint of the current stance
leg Jc.

B. Impact Invariant Control

Controllers for legged robots are often sensitive to impact
events, due to the presence of large contact forces resolving
in a relatively short period of time leading to highly uncertain
velocity signals. Prior solutions often used heuristics-based
methods such as blending or reducing feedback gains to
avoid overreacting to these velocities. While these methods
can be effective at reducing sensitivity, they sacrifice control
authority to do so.

Impact-invariant control [9] is an extension applied to
model-based controllers that enables robustness to uncer-
tainty in both the timing and duration of impact events,
while minimally sacrificing control authority. Prior work on
walking and jumping has shown it improves tracking near
impact.

The extension revolves around a projection of the robot
state into the nullspace of M−1JTλ , which maps contact
forces into generalized accelerations. The basis P (q) ∈
R(n−c)×n for the impact-invariant space is defined as

P (q̇ − q̇−) = 0 = PM−1JTλ Λ, (2)

such that the projected state is constant to any unknown
contact force or even absent contact force.

This projection can be applied directly to the robot state.
Alternatively, for more complex inverse dynamics based
controllers, the projection can be applied directly to the
tracking objectives, provided they are a function of the
robot state. This is accomplished by solving a least squares
problem to find a correction that projects the output velocities
discussed later in III-B.

III. CONTROLLER FORMULATION

A. Controller Formulation

We use an operational space controller (OSC) to track
desired outputs that produce the running motion. An OSC
is an inverse dynamics controller that tracks a set of task
or output space accelerations by solving for dynamically
consistent inputs, ground reaction forces, and generalized
accelerations [10] [11].

Our formulation, described in detail in our previous work
[9], is summarized here. For an output position y(q) =
φ(q) and corresponding output velocity ẏ = Jy(q)q̇, where

Jy(q) = ∂φ
∂q , the commanded output accelerations ÿcmd are

calculated from the feedforward reference accelerations ÿdes
with PD regulation:

ÿcmd = ÿdes +Kp(ydes − y)−Kd(ẏdes − ẏ) (3)

The objective of the OSC is then to produce dynamically
feasible output accelerations ÿ given by:

ÿ = J̇y q̇ + Jy q̈,

such that the instantaneous output accelerations of the robot
are as close to the commanded output accelerations as
possible. This controller objective is written as the following
optimization problem:

min
u,λ,q̈

Jθ(u, λ, q̈) (4)

subject to: Dynamic Constraint (5)
Holonomic Constraints (6)

Friction Cone Constraints, (7)

where Jθ is a combination of the instantaneous tracking error
and regularization terms

Jθ(u, λ, q̈) =

N∑
i

(ÿi − ÿicmd
)TWi(ÿi − ÿicmd

)

+ regularization terms. (8)

This optimization problem can be formulated as a quadratic
program (QP) and be solved efficiently.

B. Projecting General Outputs to the Impact Invariant Space

To project general outputs to an impact-invariant space,
we solve the following optimization problem:

min
λ

∥∥ẏdes − Jy(q̇ +M−1JTλ λ)
∥∥
2

(9)

subject to: Jh(q̇ +M−1JTλ λ) = 0 (10)

This applies a correction to the generalized velocities q̇ that
minimizes the tracking error in the output velocities, under
the condition that the correction lies within the set of feasible
velocities that could result from a contact impulse λ. With
some manipulation, this can be formulated as a least squares
problem and the optimal λ can be solved for implicitly
with the Moore-Penrose pseudo-inverse denoted by (·)†. The
projected output velocity error, ẏproj , can then be found as:

ẏproj = ẏdes − Jy q̇ − JyM−1JTλ λ, (11)

This projected error ẏproj is then used in place of the original
output velocity error ẏdes − ẏ in (3).

C. Finite State Machine

We use a time-based finite state machine (FSM) to specify
the active contact mode and generate the clock signal for
the reference trajectories. We use a fixed frequency finite
state machine in our implementation; however, variable step
timings can be prescribed in this framework as well. The set
of finite states is {LS, LF, RS, RF}, L and R correspond to
the left and right legs respectively and S and F correspond



Fig. 2. Key elements of the running controller diagram.

Fig. 3. Foot positions in the associated contact modes for a snapshot of
an experiment on the physical robot. Note, due to state estimator drift, the
vertical position of the foot when on the ground is not at 0.

to Stance and Flight. We distinguish between the two air
phases {LF, RF} even though they are governed by the same
dynamics in order to prescribe of different tracking priorities
for the different legs.

This FSM is also used to determine when the impact-
invariant projection is active. In a small window of duration
T before and after the nominal impact is anticipated, i.e.
during the transition from LF to RS and from RF to LS, we
blend in the correction using a continuous scalar function
α(t) to avoid introducing additional discontinuities. The
scalar function is given by:

α(t) = 1− exp(
−(t− tswitch + T )

τ
), (12)

where tswitch is the nominal impact time according to the
FSM, and τ is the time constant.

D. Tracking Objectives
The vector of tracking objectives are the virtual SLIP

length LSLIP ∈ R, the feet positions yL, yR ∈ R3, the pelvis
orientation ψ ∈ SO(3), the foot angles φL, φR ∈ R, and
finally the hip yaw joints βL, βR ∈ R. LSLIP is defined as
the distance between the pelvis and current stance foot and
the foot positions yL, yR are defined relative to the pelvis,
expressed in the world frame.

During left stance (LS), the active vector of tracking
objectives is [LSLIP , yR, ψ, φR, βR]T ∈ R9. For right stance

(RS), the tracking objectives are the same, just flipped for
the other leg.

During the aerial modes LF, RF, the active tracking
objectives are [yL, yR, ψ, βL, βR, φL, φR] ∈ R13. Note, the
dimension of the tracking objectives in flight, 13, is greater
than the total degrees of actuation, 10. Therefore, during
flight, the control formulation is over specified and perfect
tracking cannot be achieved. We chose to leave the problem
overspecified as opposed to leaving out either the pelvis
orientation ψ or one of the foot positions y because we
found that trading off multiple tracking objectives led to
better performance on hardware.

E. Reference Trajectory Generation

The OSC supports the tracking of any differentiable ref-
erence trajectory. For example, in prior work, a jumping
controller was constructed using target trajectories computed
through offline trajectory optimization. Similar methods of
computing offline reference trajectories with trajectory opti-
mization in order to construct a gait library were attempted
in the process of developing this running controller.

Ultimately, we chose to use simple well-known models
(SLIP) and heuristics (Raibert stepping [12]) to generate the
reference trajectories. The trajectories generated with these
simple heuristics were trivial to compute and resulted in
stable and natural looking running motions.

1) SLIP-inspired pelvis trajectory: Inspired by the exten-
sive literature on SLIP, we use a SLIP-like reference for the
pelvis motion during stance {LS, RS}. We achieve this by
anchoring the pelvis to a damped spring model using the
OSC gains and setting the spring rest length L, defined as
the distance between the pelvis and the current stance foot,
as a constant target output.

ÿSLIP,cmd = Kp(L− ySLIP ) +Kd(ẏSLIP ) (13)

Note, this is not formulated exactly SLIP, which has dynam-
ics:

ÿSLIP =
k

m
(L− ySLIP ) + rγ̇2 − g, (14)

where L is the rest length, k/m is the spring constant, and
γ is the angle of the leg relative to the ground. In particular



the radial and gravitational components are missing from
our formulation. We choose not to track the SLIP dynamics
because that would result in two sets of gains (one for SLIP
dynamics, and one for OSC to converge to the reference
trajectory)

2) Footstep trajectories: Regulating the global velocity is
achieved through foot placement. While there are possible
variations for choosing where to place the foot [13] [2], the
basic principle behind all the stepping strategies is stepping
in the direction that you are falling. We choose to regulate
the running velocity by planning footsteps with the widely
recognized Raibert footstep control law [12]:

yft :=

yft,xyft,y
yft,z

 =

Kx(vdes,x − vx)
Ky(vdes,y − vy)

−L

 , (15)

where K are the Raibert stepping gains, vdes are the desired
velocities as commanded by the operator, and v is the current
velocity computed by the state estimator. x and y in this
context denote the sagittal and lateral directions respectively.
yft then defines the target footstep location relative to the
pelvis.

With the end footstep location specified, we can generate
a trajectory for the swing foot given its initial position
at liftoff to the final desired location. We specify all the
reference trajectories as piecewise cubic polynomials, so with
the additional degrees of freedom we add a waypoint so
that the trajectory roughly resembles the swing leg retraction
policy observed in both numerical optimization [14] [15] and
biology [16].

3) Turning: The desired pelvis orientation is specified as
the identity quaternion in the absence of operator commands.
To implement turning, we simply offset the desired orien-
tation from the current orientation in the direction of the
command.

IV. RESULTS

The optimization problem (4) is solved using OSQP. State
estimation is implemented using a contact-aided invariant
EKF [17], where contact is detected using the deflection of
the physical leaf springs. The state estimator returns state
feedback information at 2 kHz, whereas the OSC runs at 1
kHz. The controller gains were first tuned in the Drake [18]
simulator and additional tuning was later done on hardware.
In our preliminary formulation, we are able to successfully
achieve stable running, albeit in a limited range of velocity
commands. The controller gains used on hardware are given
in Table I.

TABLE I
RELEVANT CONTROLLER PARAMETERS

Controller Parameters Value
Stance Duration (s) 0.30
Flight Duration (s) 0.10

Raibert Stepping Gains (Kx,Ky) 0.3, 0.6
SLIP (Kp,Kd) 65, 5

Projection duration (s) 0.05

Fig. 4. A feedback controller that reacts the feedback error as typically used
(blue) would react erroneously to the spikes in error near the impact events
and apply efforts that may harm tracking performance. When the error is
projected using the impact-invariant projection (yellow), the sensitivity to
the impact events is greatly reduced.

A. Feedback signal with impact-invariant projection
To illustrate the benefits of the impact-invariant projection,

we plot the velocity feedback terms in Figure 4. Due to
uncertainty in the impact timing, duration, and magnitude,
the error ẏdes − ẏ often spikes. These errors often dissipate
quickly, and thus reacting only to the projected error allows
for much more stable feedback.

V. DISCUSSION

We successfully implemented running on the 3D bipedal
robot Cassie, a task thus far only accomplished using rein-
forcement learning methods.

Our controller formulation was surprisingly simple, using
methods and heuristics developed or observed decades
prior. These results are still preliminary, with only a few
iterations of hardware tuning, thus our current controller
is only stable in a small range of commanded velocities.
Oscillations from the physical springs are a obstacle to the
tracking performance, and precise velocity regulation has
not been achieved. However, we believe additional tuning
can resolve these issues. Future work includes variable step
timings and constraints on the footstep locations.

REFERENCES

[1] J. Reher and A. D. Ames, “Inverse dynamics control of compliant
hybrid zero dynamic walking,” arXiv preprint arXiv:2010.09047,
2020.



[2] Y. Gong and J. Grizzle, “Angular momentum about the contact point
for control of bipedal locomotion: Validation in a lip-based controller,”
arXiv preprint arXiv:2008.10763, 2020.

[3] W. Xi, Y. Yesilevskiy, and C. D. Remy, “Selecting gaits for economical
locomotion of legged robots,” The International Journal of Robotics
Research, vol. 35, no. 9, pp. 1140–1154, 2016.

[4] K. Sreenath, H.-W. Park, I. Poulakakis, and J. W. Grizzle, “Embedding
active force control within the compliant hybrid zero dynamics to
achieve stable, fast running on mabel,” The International Journal of
Robotics Research, vol. 32, no. 3, pp. 324–345, 2013.

[5] C. Hubicki, A. Abate, P. Clary, S. Rezazadeh, M. Jones, A. Peekema,
J. Van Why, R. Domres, A. Wu, W. Martin, et al., “Walking and
running with passive compliance: Lessons from engineering: A live
demonstration of the atrias biped,” IEEE Robotics & Automation
Magazine, vol. 25, no. 3, pp. 23–39, 2018.

[6] J. Siekmann, Y. Godse, A. Fern, and J. Hurst, “Sim-to-real learning of
all common bipedal gaits via periodic reward composition,” in 2021
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2021, pp. 7309–7315.

[7] J. Siekmann, K. Green, J. Warila, A. Fern, and J. Hurst, “Blind bipedal
stair traversal via sim-to-real reinforcement learning,” arXiv preprint
arXiv:2105.08328, 2021.

[8] H. Duan, A. Malik, J. Dao, A. Saxena, K. Green, J. Siekmann, A. Fern,
and J. Hurst, “Sim-to-real learning of footstep-constrained bipedal
dynamic walking,” arXiv preprint arXiv:2203.07589, 2022.

[9] W. Yang and M. Posa, “Impact invariant control with applications to
bipedal locomotion,” in 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, pp. 5151–5158.

[10] P. M. Wensing and D. E. Orin, “Generation of dynamic humanoid
behaviors through task-space control with conic optimization,” in 2013
IEEE International Conference on Robotics and Automation. IEEE,
2013, pp. 3103–3109.

[11] L. Sentis and O. Khatib, “Control of free-floating humanoid robots
through task prioritization,” in Proceedings of the 2005 IEEE Inter-
national Conference on Robotics and Automation. IEEE, 2005, pp.
1718–1723.

[12] M. H. Raibert, H. B. Brown Jr, and M. Chepponis, “Experiments in
balance with a 3d one-legged hopping machine,” The International
Journal of Robotics Research, vol. 3, no. 2, pp. 75–92, 1984.

[13] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi,
and H. Hirukawa, “Biped walking pattern generation by using preview
control of zero-moment point,” in 2003 IEEE International Conference
on Robotics and Automation (Cat. No. 03CH37422), vol. 2. IEEE,
2003, pp. 1620–1626.

[14] H. Dai and R. Tedrake, “Optimizing robust limit cycles for legged
locomotion on unknown terrain,” in 2012 IEEE 51st IEEE Conference
on Decision and Control (CDC). IEEE, 2012, pp. 1207–1213.

[15] A. Seyfarth, H. Geyer, and H. Herr, “Swing-leg retraction: a simple
control model for stable running,” Journal of Experimental Biology,
vol. 206, no. 15, pp. 2547–2555, 2003.

[16] M. A. Daley and A. A. Biewener, “Running over rough terrain
reveals limb control for intrinsic stability,” Proceedings of the National
Academy of Sciences, vol. 103, no. 42, pp. 15 681–15 686, 2006.

[17] R. Hartley, M. Ghaffari, R. M. Eustice, and J. W. Grizzle, “Contact-
aided invariant extended kalman filtering for robot state estimation,”
The International Journal of Robotics Research, vol. 39, no. 4, pp.
402–430, 2020.

[18] R. Tedrake and the Drake Development Team, “Drake: Model-based
design and verification for robotics,” 2019. [Online]. Available:
https://drake.mit.edu


