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Abstract— In this abstract, we examine the problem of push
recovery for bipedal robot locomotion and present a reactive
decision-making and robust planning framework for locomotion
resilient to external perturbations. Rejecting perturbations is
an essential capability of bipedal robots and has been widely
studied in the locomotion literature. However, adversarial
disturbances and aggressive turning can lead to negative lateral
step width (i.e., crossed-leg scenarios) with unstable motions
and self-collision risks. These motion planning problems are
computationally difficult and have not been explored under a
hierarchically integrated task and motion planning method. We
explore a planning and decision-making framework that closely
ties linear-temporal-logic-based reactive synthesis with trajec-
tory optimization incorporating the robot’s full-body dynamics,
kinematics, and leg collision avoidance constraints. Between
the high-level discrete symbolic decision-making and the low-
level continuous motion planning, behavior trees serve as a
reactive interface to handle perturbations occurring at any time
of the locomotion process. Our experimental results show the
efficacy of our method in generating resilient recovery behaviors
in response to diverse perturbations from any direction with
bounded magnitudes.

Paper Type – Recent Work [1]

I. INTRODUCTION

As legged robots are increasingly deployed in complex
environments, the need for robots to accomplish tasks
through symbolic planning and decision-making becomes
more apparent. Although locomotion robustness has been
extensively explored at the motion planning level, resilience
to uncertainties and external disturbances at the task planning
level has been largely overlooked. Hierarchically integrated
task and motion planning (TAMP) is capable of handling
logical and whole-body dynamics objectives simultaneously.
Unexpected errors or even failures at the lower-level can lead
to expensive re-planning at the higher task planning level.
On the other hand, high-level discrete task plans can result
in infeasible low-level motion plans. With these cascading
effects, novel TAMP methods are imperative to make robust
locomotion decisions resilient to environmental perturbations
and enable robots to efficiently recompute plans at both task
and motion planning levels.

At the motion planning level, push recovery of bipedal
locomotion has been extensively studied in previous works
[2], [3]. Many of these push recovery strategies, however,
employ reduced-order models (RoMs) such as inverted pen-
dulum or centroidal momentum model. Challenge arises

The authors are with the Laboratory for Intelligent Decision and Au-
tonomous Robots, Woodruff School of Mechanical Engineering, Georgia
Institute of Technology. {zgu78, nboyd31, yezhao}@gatech.edu

This work was funded by the NSF grant # IIS-1924978 and Georgia Tech
Institute for Robotics and Intelligent Machines Seed Grant.

Fig. 1: a) Human is forced to cross legs to recover from an external
disturbance. b) Human must execute leg crossing to traverse stepping stones.
c) An illustration of recovery motion of bipedal robot Cassie.

from solving full-leg collision constraints in these RoMs.
Liu et al. [4] demonstrated a complete control framework
that considers self-collision under various disturbances, but
the framework does not consider more complicated multi-
step or non-periodic recoveries. Reactive approaches for
high dimensional robots have also been explored [5]–[7],
which rely on a distance metric to generate safe repulsive
motions. These approaches, however, can lead to significant
motion plan discrepancies. In addition, few motion planning
strategies incorporate higher-level task planning.

For high-level task planning, reactivity is critical to ac-
count for environmental changes at runtime. Temporal-logic-
based reactive synthesis [8]–[10] has been widely explored
to find strategies that generate formally-guaranteed safe and
provably correct robot actions in response to environmental
events. However, this method has been under-explored for
dynamic locomotion problems until recent years. Recent
works [11]–[14] adopted linear temporal logic (LTL) to
synthesize reactive locomotion navigation plans over rough
terrains. Although bipedal walking only involves alternating
left and right foot contacts, incorporating external pertur-
bations into formal foot placement decision-making in a
provably correct manner remains challenging. Moreover,
the feasibility of executing synthesized task plans on high
degree-of-freedom legged robots is unexplored. To address
these challenges, this study combines collision-avoidance-
aware trajectory optimization (TO) with LTL methods to
guarantee the task completion of the robot locomotion.

Behavior Trees (BTs), as graphical mathematical models,
have been widely explored to schedule autonomous tasks
and handle unexpected environmental changes [15], [16].
Their reactive and modular structure can authorize multiple
behavioral plans and achieve fault-tolerant task executions
[17], [18]. Formal methods [11] only account for perturba-
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Fig. 2: Block diagram of the proposed framework. a) Experiments of Cassie disturbed during stable walking; b) The high-level task planner synthesis,
employing an LTL two-player game; c) The BTs act as a middle layer that reactively executes subtrees based on real-time environmental disturbances;
d) A whole-body motion planner is used to generate feasible motions and refine LTL specifications ψ. The high-level task planner and the phase-space
planner are integrated in an online fashion, as shown by the solid black arrows.

tions applied at specific instances. Handling perturbation at
any locomotion phase require further investigation. The BTs
naturally handle the continuous environmental perturbations
by designing actions online to amend the discrete decision
maker.

This study addresses the push recovery problem for legged
robots subject to external perturbations that can happen any-
time. We propose a combined TAMP framework composed
of hierarchical planning layers operating at different temporal
and spatial scales (Fig. 2). First, the LTL planning designs
safety-guaranteed decisions on keyframe states, including
center of mass (CoM) state or foot placements, in response
to the keyframe perturbations. When perturbations occur
at non-keyframe instants, analytical Riemannian manifolds
are used to recalculate a new keyframe transition online
for the current walking step. BTs are integrated to allow
the updated keyframe states to be any continuous value
within the allowable range, instead of a finite set of discrete
values quantified in the LTL-based planner. Finally, full-body
legged motions are generated using kinodynamic-aware TO
for non-periodic multi-step locomotion with self-collision
constraints. Compared to our previous robust locomotion
work [19], [20], this work (i) studies perturbation recov-
ery from comprehensive perturbations in all directions and
during various locomotion phases, and (ii) solves full-body
TO to generate dynamically feasible trajectories that refine
high-level decisions. The core contributions of this paper are
summarized as follows:

• We present a hierarchically integrated LTL-BT TAMP
framework for dynamic locomotion that reacts to con-
tinuous environmental perturbations for resilient task
execution.

• We employ Riemannian manifolds to quantify loco-
motion keyframe robustness margins and design robust
transitions enabled by the reactive task planner.

• We propose a collision-aware, kinodynamic TO that
generates collision-free and non-periodic full-body mo-
tions and use this TO to refine feasibility specifications
in reactive synthesis.

II. PLANNING METHODS

This section details the symbolic decision-making and mo-
tion planning framework (Fig. 2). Our hierarchical reactive

framework is composed of (i) LTL-level reactive synthesis
handling perturbations at keyframe instants, (ii) BT for robust
execution of one walking step (OWS) between keyframe
instances, (iii) full-body motion primitive generation from
kinodynamic-aware TO.

Fig. 2a represents a bipedal robot walking on a perturbing
platform. A decision maker (Fig. 2b) plans a multi-step
action plan P at each apex instant. The behavior tree
in Fig. 2c is executed at every control loop; it modifies
the desired keyframe transition based on the instantaneous
tracking performance. The modified keyframe transition is
the interpolation hyperparameter used to find a full-body
trajectory in a set of motion primitives. The motion primitive
set and decision maker are created offline.

A. Keyframe-based Non-periodic Locomotion

We separate the entire trajectory into multiple OWS phases
that start and end at keyframe states. The keyframe state is
defined based on a step-to-step discretization of the continu-
ous walking process, allowing the robot to make CoM apex
parameter decisions for each walking step. The ith OWS
cycle can be represented by a discrete keyframe transition
pair (ki, ki+1). The keyframe contains the sagittal and lateral
CoM apex state, as well as the stance foot index.

Compared to periodic walking where the robot repeats
the same motion pattern over multiple steps, keyframe-based
walking is non-periodic, which better accommodates rough
terrain and environment disturbances.

B. LTL Specifications for Push Recovery

As the complexity of locomotion tasks increases, making
safe decisions on keyframe states to recovery from perturba-
tions becomes intricate. To address this challenge, we employ
reactive synthesis, which is built upon task specifications and
abstractions of dynamical systems [9], [21]. The tasks are
represented by LTL specifications, which describe temporal
and logical relations of the system properties. The abstraction
(i.e., transition system) is a discrete description of the system
and environment dynamics. Detailed LTL semantics can be
found in [22].

To formally guarantee locomotion task completion under
environmental disturbances, we adopt the General Reactivity
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Fig. 3: An illustration of a phase-space Riemannian partition and non-
deterministic lateral keyframe transition for disturbance recovery.

of Rank 1 (GR(1)) [23]. GR(1)—a fragment of LTL—
provides correct-by-construction guarantees of the realizabil-
ity of LTL specifications. Provided a transition system TSE
and LTL specification ψ, the reactive synthesis problem aims
for a winning strategy for the robot system such that the exe-
cution path satisfies ψ [13]. If the specification is realizable,
a decision maker will be constructed and will provide correct
actions for any modelled environmental events.

The transition system discretizes the continuous state
space (i.e., robot’s CoM phase space near the apex state) into
Riemannian partitions. The Riemannian partitions are defined
for both sagittal and lateral phase-space, each constitutes 12
cells. The Riemannian partitions use the analytical mani-
folds of CoM dynamics derived from the Prismatic Inverted
Pendulum Model (PIPM), which discretizes the phase-space
with tangent and cotangent locomotion manifolds, instead
of using naı̈ve Euclidean-type discretization. The tangent
and cotangent manifolds comply with the PIPM locomotion
dynamics and provide an intuitive trajectory recalculation
strategy for potential CoM deviation. The discretization of
the phase-space plane allows the LTL to define specifications
and make symbolic decisions.

The system takes actions asys to decide the next keyframe
state kn. The environment action is penv that pushes the
system from the current keyframe state kc to a specific
Riemannian cell center. In the task planner, we assume that
the environment action is a perturbation applied only at a
keyframe instant. The perturbation induces a CoM position
and velocity jump after applying an external force to the
robot’s pelvis frame. The system action asys and environment
action penv together decide the next apex keyframe state
kn = TSE(kc, asys, penv).

We define steady state keyframes Kss as the apex states
during perturbation-free walking. The lateral velocity of a
steady state keyframe kss is zero. The specifications of the
system are defined as follows:

• The robot chooses to maintain stable walking so long
as there is no perturbation from the environment.

• In the presence of perturbations, the keyframe state
returns to a steady state within two steps.

• The transition is feasible and verified by a low-level
full-body TO (Sec. II-E).

• For the recovery motion execution not to be interrupted,
we assume the environment perturbation happens at
most once every two steps.
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Fig. 4: An illustration of the PABT structure. The PABT groups a set of
locomotion subtrees Ψi. Each subtree is a fallback tree that encodes a
keyframe transition (kc,i, kn,i) and a Riemannian recalculation action.

• The policy tries to decrease its lateral velocity from kc

to kn, if it cannot recover to a steady state kss within
one step.

C. Task Planner Synthesis

Given the LTL specifications above, the task planner
models the robot system and the environment as two agents.
The two agents interplay in a two-player game.

At each keyframe instant, the decision maker uses the
estimated current system keyframe state kc and plans a
sequence of transitions until the final state kf = kss. The
action roll-out produces an action plan P = {kc, . . . , kf}.

D. Behavior-Tree-Based Dynamic Replanning

To address continuous perturbations at non-keyframe
instants, we propose a perturbation-aware behavior tree
(PABT) that online modifies the desired keyframe transition
(kc,d, kn,d). The PABT complements the reactive synthesis
by locally modifying the keyframe transitions, given the real-
time captured CoM state [pCoM; ṗCoM].

The PABT groups a set of locomotion subtrees Ψ =
⋃
i

Ψi.

Each Ψi encodes a pair of the current-to-next keyframe states
(kc,i, kn,i). These pairs are represented as condition nodes
in the locomotion subtrees (Fig. 4). The locomotion subtrees
are fallback BTs that execute their action nodes when the
desired keyframe transition from the high-level matches their
condition nodes.

The PABT modifies its keyframe transitions locally to
handle non-keyframe perturbations. Here we use the recovery
strategy [19] to perform a Riemannian recalculation. When
the CoM state is perturbed off from the nominal manifold,
the recovery strategy computes a new trajectory from the
current state to an updated desired keyframe, which still
follows the LIPM locomotion dynamics.

The PABT grows when the new action plan P is com-
manded from the task planner. The PABT constructs new
subtrees that represent each new transition (kc, kn) from P .

E. Collision-Aware Kinodynamic Trajectory Optimization

The task planner and PABTs generate keyframe transitions
robust to perturbations. However, mapping the transitions to
whole-body trajectories in real-time often poses a challenge
due to the curse of dimensionality. To address this, we use
TO to create a set of motion primitives offline. The TO
generates desired motions that satisfy the physical constraints
while minimizing the trajectory cost [24]–[26]. The TO is
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Fig. 5: Lateral and sagittal responses to diagonal disturbances at keyframe
and non-keyframe instants while walking at 0.5 m/s apex velocity. Each
color represents a single step generated by the LTL-BT.

Fig. 6: Maximally allowable velocity change exerted on the CoM for a
single step at 30◦ increments. The perturbation happens at different phases
during a right leg stance. Values on the left half resulted in single wider
step recoveries, and values on the right half require crossed-leg maneuvers.

also used as a verification to check the feasibility of high-
level keyframe transitions. More detailed constraint setting
can be found in [1].

The proposed TO is different from the existing state-of-
the-art methods. Compared to [25], we exclude motions with
leg collisions using distance-based constraints, increasing
the safety of the feasible motions. Compared to [27], our
TO considers the full-body dynamics of the bipedal robot
with more aggressive motions (e.g., perturbed leg crossing),
providing a more accurate gauge for dynamic feasibility.

III. RESULTS

To demonstrate the robustness of the proposed methods,
we tested various scenarios in Matlab simulation with a
bipedal robot, Cassie. The full dynamics is modelled by the
Simscape engine. The NLP solver IPOPT [28] solved the TO
problems. Our framework, together with a virtual constraint
controller [29], ran at a rate of 2 kHz online. Perturbation
was detected by filtering the CoM velocity estimation. We
used SLUGS reactive synthesis toolbox [30] to design LTL
specifications and synthesize the decision maker.

We evaluated the performance of our framework through
multiple push recovery studies. As shown in Fig. 5, the
system was capable of composing multiple OWS trajectories.
The robot was firstly disturbed to the non-apex velocity
(ẋ, ẏ) = (0.63, 0.31) m/s at keyframe instant. The keyframe
decision maker planned a two-step recovery strategy (one

Fig. 7: We tested the framework on CAREN. CAREN moves omnidirection-
ally and provides precise perturbation during periodic walking. We perturbed
in 12 directions and selected 2 trials (left and right perturbations) to represent
the results.

crossed-leg step and one succeeding wider step) to come
back to a steady state kss. Disturbances at non-keyframe
states required the robot to recalculate a new CoM trajectory
to an updated keyframe state. The PABT locally modified
the desired keyframe transition and allowed the transitions
to start and terminate in non-Riemannian-cell-centers. The
reactive synthesis could update the keyframe transitions as
long as the CoM state was inside the Riemannian robustness
bound (grey areas in Fig. 5).

In Fig. 6, we compared the maximum impulse velocity
changes the system can recover from in 12 directions during
OWS in simulation. The robot walked sagittally at 0.5 m/s
apex velocity. After the perturbation, it recovers using two
steps. When the push direction was lateral left, the robot
would take a wider step to come back at kss; otherwise,
when the push direction was lateral right, the robot needed
to adopt the crossed-leg maneuvers. The perturbations are
applied at four different phases, with phases ϕ = 0% and
90% closer to keyframe states (boundary phases), and ϕ =
30% and 60% closer to the contact switch phase (50%). The
asymmetry of the maximum allowable disturbances in the
lateral directions can be attributed to the more constrained
kinematic workspace of the swing legs in the crossed-leg
scenario.

Fig. 7 shows the Cassie recovery from perturbation on
a Computer Aided Rehabilitation system (CAREN). We
exerted disturbances in 12 directions with a maximum of
0.5 m/s peak velocity during periodic walking. The top row
represents a rightward platform move induced leg crossing
recovery, and the bottom row shows a recovery maneuver by
taking a wider step.

IV. CONCLUSIONS

In this paper, we presented a locomotion framework
for reactive disturbance rejection at the symbolic decision-
making and continuous motion planning level. We combined
reactive synthesis with BTs to demonstrate safe, continuous,
disturbance rejection capabilities.

At the low level, the TO generates full-body locomotion
trajectories and refines feasible keyframe specifications in
the reactive synthesis to fill the gap between the high-level
decisions making and the low-level motion planning.
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G. Hirzinger, “Extensions to reactive self-collision avoidance for
torque and position controlled humanoids,” in IEEE International
Conference on Robotics and Automation, 2011, pp. 3455–3462.

[8] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-
based reactive mission and motion planning,” IEEE Transactions on
Robotics, vol. 25, no. 6, pp. 1370–1381, 2009.

[9] J. Liu, N. Ozay, U. Topcu, and R. M. Murray, “Synthesis of reactive
switching protocols from temporal logic specifications,” IEEE Trans-
actions on Automatic Control, vol. 58, no. 7, pp. 1771–1785, 2013.

[10] K. He, A. M. Wells, L. E. Kavraki, and M. Y. Vardi, “Efficient
symbolic reactive synthesis for finite-horizon tasks,” in International
Conference on Robotics and Automation, 2019, pp. 8993–8999.

[11] Y. Zhao, Y. Li, L. Sentis, U. Topcu, and J. Liu, “Reactive task
and motion planning for robust whole-body dynamic locomotion
in constrained environments,” The International Journal of Robotics
Research, In Press, 2022.

[12] S. Kulgod, W. Chen, J. Huang, Y. Zhao, and N. Atanasov, “Temporal
logic guided locomotion planning and control in cluttered environ-
ments,” in American Control Conference, 2020, pp. 5425–5432.

[13] J. Warnke, A. Shamsah, Y. Li, and Y. Zhao, “Towards safe locomotion
navigation in partially observable environments with uneven terrain,”
in IEEE Conference on Decision and Control, 2020, pp. 958–965.

[14] A. Shamsah, J. Warnke, Z. Gu, and Y. Zhao, “Integrated task and
motion planning for safe legged navigation in partially observable
environments,” arXiv preprint arXiv:2110.12097, 2021.

[15] A. Marzinotto, M. Colledanchise, C. Smith, and P. Ögren, “Towards a
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