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Abstract— Agile maneuvers such as sprinting and high-speed
turning in the wild are challenging for legged robots. Reinforce-
ment learning provides a promising framework for addressing
this challenge. We present an end-to-end learned controller that
achieves record agility for the MIT Mini Cheetah, sustaining
speeds up to 3.9m/s. This system runs and turns fast on
natural terrains like grass, ice, and gravel and responds robustly
to disturbances. Our controller is a neural network trained
in simulation via reinforcement learning and transferred to
the real world. The two key components are: (i) an adaptive
curriculum on velocity commands; and (ii) an online system
identification strategy for sim-to-real transfer leveraged from
prior work. Videos of the robot’s behaviors are available at:
https://agility.csail.mit.edu/.

Paper Type — Recent Work [26].

I. INTRODUCTION

Running fast on natural terrains is challenging. Different
terrains exhibit different characteristics, ranging from vari-
able friction and softness to sloped and uneven geometry.
As a robot attempts to move at faster speeds, the impact
of terrain variation on controller performance increases [6],
[10]. Some additional physical considerations only begin to
influence the robot’s dynamics at high speeds, including the
enforcement of actuator limits [7], [8], [13], the regulation
of large contact forces [19], and body control during flight
phases [8], [19]. One possibility is to resolve these issues by
making targeted improvements to the hand-designed models
used in model-based control. Impressive progress has been
made in this direction [5], [6], [7], [9], [8], [10], [13], [19].
However, in model-based control, the robot’s behavior and
robustness are dependent on the creativity and investment of
the human designer, who must invent simplified (or reduced-
order) models that allow for reasoning about particular
properties of the robot and environment under the constraint
of real-time computation.

How can we perform real-time control in complex envi-
ronments where efficient reduced-order models may not exist
or are currently unknown? One might try to optimize the
robot’s actions with respect to a full physics model, but for
a complex task such as running on natural terrain, this is not
possible in real-time. An alternative is to amortize the cost
of trajectory optimization by learning a direct mapping from
sensory observations to actions (a policy). Reinforcement
learning (RL) provides a way to learn such a policy. In this
approach, the human designs a set of training environments
and a reward function that specifies each task at hand. RL
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Fig. 1: Our end-to-end learned controller enables the MIT
Mini Cheetah to execute fast running, spinning, and deal with

natural terrains. All are realized by a single neural network
trained in sim and deployed zero-shot in the real world.

algorithms automatically discover the policy that maximizes
reward across those environments and tasks. Because the
RL framework does not require a human engineer to design
accurate and efficient reduced-order models, it is less reliant
on human effort. As a result, RL offers a scalable controller
synthesis scheme for complex tasks in challenging environ-
ments. Recent works have successfully used RL for training
locomotion controllers [21], [22], [25], [28], [33], [35].

Our goal is to construct a system that can traverse ter-
rains at a large range of linear and angular velocities. This
corresponds to a multi-task RL setup, where running with
each combination of linear and angular velocity constitutes
a task. Learning multi-task policies via RL on a broad set
of tasks is known to be difficult [14]. The naive approach
to train a multi-task RL policy is to provide all tasks
simultaneously. However, if the majority of the tasks are
challenging or infeasible, this approach is likely to fail. This
is the case in the setting of high-speed locomotion, where
the effect of centrifugal force constrains a robot’s physically
feasible combinations of linear velocity and angular speed.
To provide the agent with tasks of appropriate difficulty,
it makes sense to initially select easier tasks and then
slowly increase their complexity using a curriculum [3].
Curriculum learning has been leveraged for training many
robotic systems in the past [23], [27], [33], [38]. Manual
design of curriculum is not appropriate when the difficulty
or feasibility of tasks is not known apriori. We propose
an automatic curriculum strategy that expands the set of
tasks while respecting the physical constraints of locomotion.
The proposed strategy yields performance improvements in
learning omnidirectional high-speed locomotion.

When deployed in the real world, our system performs
rapid locomotion in both indoors and outdoors, and success-
fully negotiates challenging terrains and disturbances. Our
work fills in a gap in the literature: it demonstrates that for a
small, agile quadruped, reinforcement learning can produce
controllers that simultaneously embody diverse, high-speed
behaviors and deploy successfully in the wild.


https://agility.csail.mit.edu/
mailto:gmargo@csail.mit.edu,geyang@csail.mit.edu

qit—H:t)

Joint Encoder .
qpt—H:t) \

IMU 84 oi;g o—o g
Past Actions ‘l([lchH»z—Vc
Command Velocity V‘p","}r 1]

Fig. 2: Our controller is a learned mapping from sensory
inputs to desired joint positions. We parameterize it as 5-layer
neural network my with parameters 6 optimized in simulation.
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II. EXPERIMENTAL SETUP

Hardware: We use the MIT Mini Cheetah [18] as our ex-
perimental platform. The robot stands 30 cm tall and weighs
9kg. It is equipped with 12 quasi-direct-drive actuators
capable of maximum output torque 17Nm. The robot’s
sensor suite consists of joint position encoders and an inertial
measurement unit (IMU). Our neural network controller runs
at 50 Hz on an onboard NVIDIA Jetson TX2 NX computer.
Simulation: We use the IsaacGym simulator [24] and code
adapted from the open-source repository in [33]. We collect
400 million simulated timesteps using 4000 parallel agents
for policy training. This is roughly equivalent to 92 days of
data, which in simulation we can collect in under three hours
of wall-clock time on a single NVIDIA RTX 3090 GPU.

III. METHOD

A. Control Architecture

Observation Space consists of: joint angles, q, € R'2, mea-
sured using motor encoders; joint velocities, q, € R!2: and
g% € R3 denoting the orientation of the gravity vector in the
robot’s body frame measured using the IMU. Policy 7y (-)
takes as input a history of previous observations and actions
denoted by 0;_ 7.+ where 0; = [q;, q;, g, a;_1]. Because we
are learning a command-conditioned policy, the input to the
policy is x;_ ., where x; = 0; @ v§™!. During deployment,
the body velocity command v{™ is specified by a human
operator via remote control.

Action Space The action, a; € R!2, assigns joint position
commands for a PD controller. The proportional gain is 20
and the derivative gain is 0.5. We chose these low gains to
promote smooth motions, and did not tune them during the
course of our experiments.

Reward Function closely follows [33] with task reward
terms for linear and angular velocity tracking, as well as
a set of auxiliary terms for stability, smoothness, and safety.

B. Teacher-Student Training

We randomize d;: the body mass, center of mass, motor
strength, ground friction, and ground restitution, to facilitate
sim-to-real transfer and adaptation to diverse environments.
A teacher policy that observes d; is trained using rein-
forcement learning. Then, a deployable student policy is
trained using supervised learning to imitate the teacher while
observing only the state history.

1) Teacher Policy: We separate the teacher policy
mr(X¢,d;) into two modules gy, and mp,, such that
wr(Xe,d) = 7o, (Xt, go,(d¢)). The first module gy, is the
encoder, z; = gp,(d;), which compresses d; into an inter-
mediate latent vector z,. The second module 7y, is the policy
body, a; = mp, (X¢,Z:), which predicts an action from the
latent z; and observation x;. Each module is parameterized
as a neural network with ELU activations. We optimize
the teacher’s parameters 64,60, together using PPO [34] to
maximize the future discounted reward.

2) Student Policy: The student policy
Ts(Xt, Xje—nt—1]) = 7o, (Xt, ho, (Xg—p:e—1))) imitates
the teacher’s behavior during deployment without access to
d;. The student policy is constructed by replacing encoder
go,(d;) with an adaptation module, Z; = hg, (X—p:t—1])
which estimates the latent z; from state history Xp;_j.;—1)-
We train the adaptation module so that its predictions Z;
match the encoder’s output z; = gp,(d;) as closely as
possible. To this end, we optimize parameters 6, using
supervised learning on on-policy data, using the loss
function Ly, = (2; — 2z;)? . This is the same teacher-student
formulation from [21], using a shorter history of A = 15
observations for a smaller network and faster inference.

C. Curriculum Strategy

The agent learns by attempting to track different velocity
commands. Longitudinal and yaw velocity commands vemd,
w™ during episode k are sampled from probability distri-
bution p¥ , (-,-), which changes according to a curriculum.

1) Box Adaptive Curriculum Update Rule: At episode
k, the linear and angular velocity commands for the agent
are sampled independently: ve™d ~ pk(.), wimd ~ pk (1),
Suppose the agent receives rewards 7ema, r,eme 10 its attempt

to follow v™d, M4, Then we apply the update rule

x ’
k n
p A\ T ,,cmd < ’y,
pl:’:;kl(vr;) — vm( z) v ] (1)
1 otherwise.

which increases the probability density on neighbors v, of
v and w? of wS™d. Here, neighboring commands are
defined as the adjacent elements in the (discretized) domain
of each marginal distribution: v2 € {v¢™d — 0.5 v¢md 1 0.5}
and " € {wS™d — 0.5, w™d 4 0.5},

2) Grid Adaptive Curriculum Update Rule: As before,
if the agent succeeds in this region of command space, we
would like to increase the difficulty by adding neighboring
regions to the sampling distribution. However, the distri-
butions of v¢™d and Vzmd are no longer constrained to be
independent. This enables us to revise our update with a new
definition of the neighboring commands. Upon termination
of an episode with command [v¢™ w™d] where the agent
received rewards 7yma, 7yema, We use the following update:

k n n
k41l /on Py, w. (Vh, W) Tyemi < 7Y OF Tema < 7,
pvm,wz (Vatvwz) — .

1 otherwise.
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(a) Heatmap of converged tracking error
for curriculum strategies. Darker is better.
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(c) Online system identification reduces
tracking error, particularly at high speeds.

Fig. 3: Velocity tracking performance across high-speed running and spinning. Choice of curriculum strategy and use of

teacher-student training each improve top-end speed.

This update adds probability density to the neighboring
velocity commands [v?, w"?] of [v¢™ wMmd]. Here, neighbor-
ing commands are defined as neighbors in the 4-connected
grid domain of p§ , (-,-), which is a discrete grid with
resolution [0.5m/s, 0.5rad/s].

IV. RESULTS
A. Curriculum for Learning High-Speed Locomotion

Figures 3] [33] illustrate the tracking error of the policies
trained with different curricular strategies as heatmaps in the
vemd_ymd plane. The shading corresponds to tracking error,
with darker shading indicating lower error. We observe that
the policy trained without any curriculum fails to learn; the
reward almost always remains small, providing very little
learning signal. The performance of the system is improved
by implementing the Box Curriculum. The agent first learns
to track well in the small initial command distribution,
then gradually increases its capability as the commands
become larger. Using the Grid Curriculum, the performance
of the policy is best, as evidenced by the larger command
area. By maintaining a joint distribution over linear and
angular velocity, the grid curriculum models the interaction
between them. When high linear and angular velocities are
combined, a body experiences centrifugal force which must
be countered by frictional force to remain on the desired
path. This induces a constraint on maximum combinations
of linear and angular velocity such that the two vary inversely
[w, ~ 1/v,] when the constraint is active. This phenomenon
is in agreement with the apparent inverse shape of the
command area boundary shown in Figure [3a] which indicates
that the robot has reached a physical limit on its ability to
turn at high speed.

B. Real-world Testing

Video of all experiments is viewable on the project web-
site: https://agility.csail.mit.edu/l

Indoor Running To evaluate how fast our robot can run in
the real world, we ramped the velocity command to 6.0 m/s.
We conducted this experiment in a motion capture arena to
accurately estimate the robot’s running speed (Figure [I] left).
We found that policies trained with a system identification
module and grid curriculum were capable of sustaining an
average of 3.8 m/s on hardware across multiple seeds, with

the best of three trials reaching a sustained speed of 3.9 m/s.
This is higher than the previous record of 3.7 m/s achieved
by a model-predictive control algorithm [19]. Together with
concurrent work [16], this is substantially faster than previ-
ously reported applications of reinforcement learning.

To understand the impact of online system identification in
crossing the sim-to-real gap, we also evaluated policies with-
out the system identification module. We found that these
policies only sustained an average peak speed of 2.49m/s .
We conclude that online system identification helps increase
maximum agility in the real world. It partially compensates
for the sim-to-real gap and improves agent performance.
It is unclear how much of the remaining performance gap
between simulated and real environments arises from a
shortcoming of the controller or from the physical limits of
the real-world robot and terrain.

Outdoor Running Outdoor terrain presents multiple chal-
lenges not present in indoor running, among which are
change in ground height, friction, and terrain deformation.
Under these variations, the robot must actuate its joints
differently to reach high speed than it would on a treadmill or
paved road. To test if our system is able to run on outdoor
terrains, we conducted an outdoor dash across an uneven
grassy patch. We record an outdoor 10-meter dash time of
2.94 seconds, corresponding to an average speed of 3.4m/s.

Yaw Control We evaluate our controller’s yaw velocity
control in the lab setting as shown in Figure [I] (center).
The robot accelerates to a maximum yaw rate of 5.7 rad/s,
then stops safely. This is 90% of the fastest yaw rate
recorded on the Mini Cheetah using a model-based controller
[4]. However, the model-based records were achieved using
different controllers for linear [19] and angular [4] velocity,
while all of our results for running and spinning inside and
outside the lab are achieved by a single policy. To challenge
the controller’s spinning skills, we brought the robot outside
after a snowstorm and piloted it onto an icy patch, illustrated
in Figure [T] (right). The robot maintained stability while
spinning as its feet frequently slipped on ice.

Response to Terrain Changes and Hardware Failures
We tested our system in a diverse set of challenging real-
world scenarios: (1) ascending a steep incline made of
small pebbles. (2) maintaining balance despite a mechanical
blockage to one motor. (3) tripping at high speed, flying
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upside down and landing on its feet. (4) recovering via a
change in gait after tripping over a small barrier. These
qualitative results are presented in the accompanying video.

We also deployed the model-predictive controller from
[19] in scenarios (1) and (4), which were the most convenient
to replicate. We found that unlike our learned controller,
the baseline did not recover from (1) slipping down the
gravelly incline and (4) tripping over the barrier. We want
to emphasize that while these results are encouraging, we
are not claiming that is not possible to design a non-learning
system that is as or more robust than our learned policy.
Our claim is simply that by freeing the human from directly
refining the robot’s model or behavior, RL offers a scalable
alternative to obtain robust responses to diverse conditions.

C. Impact of Online System Identification

We evaluate (1) the benefit of access to privileged in-
formation when learning to run at high speeds and (2) the
ability of the student policy to retain the performance gains
using only available sensor data. We compare 7pg(X:),

77 (X¢, dt ), 75 (Xe, X[i—p:t—1)) as described in Section [III-B

in the high-speed regime. All policies are trained under the
same randomization of the privileged state.

We find that access to privileged information expands the
command area, which corresponds to increased performance
across all speeds. Figure plots the command area for
the three policies as the threshold for error increases. The
privileged teacher 7w trained with access to environment
parameters attains a strictly larger command area than the
policy wp g trained with only the robot state. Using the online
system identification module, we show that the student policy
g is able to nearly match the performance of the teacher.

V. RELATED WORK

Model-based Control for Locomotion Seminal work in
the field used simplified models and hand-specified gaits to
make legged robots balance and move dynamically [12],
[17], [31]. Subsequent works introduced expanded models
with layered control architectures capable of operation on
subsets of rough, soft, and slippery terrains [6], [10], [20],
[29], [30], [32]. Recent innovations have addressed specific
limitations of simple models with respect to high-speed
running, including whole-body control [8] and regulation of
large ground reaction forces under body motion [5], [19].

Reinforcement Learning for Locomotion [15], [36], [37]
combined model-free reinforcement learning with dynamics
randomization to learn locmotion policies in simulation and
transfer them to the real world for the ANYmal, Cassie,
and Minitaur robots. Followup works expanded ANYmal’s
robustness by training on diverse terrains using the teacher-
student learning paradigm [22], [28], [33]. The mechanical
design of the ANYmal robot is thought to limit it from
running at higher speeds. [11], [21] investigated the capa-
bility of model-free controllers to efficiently traverse diverse
terrains on the Unitree Al, a small robot with similar size,
actuation, and cost to the Mini Cheetah. The A1’s built-in
MPC controller has a maximum running speed of 3.3m/s,

but these learning-based works only demonstrated running
up to maximum speed 1.8 m/s. Concurrently with our work,
Ji et al. [16] also trained agile running policies for the
Mini Cheetah robot using reinforcement learning. Unlike
our work, [16] used a fixed-schedule curriculum on forward
linear velocity only.

Curricula for On-Policy Reinforcement Learning Prior
works have shown that a curriculum on environments can
enable discovery of behaviors that are challenging to learn
directly using reinforcement learning [3]. [2] demonstrated
an Automatic Domain Randomization strategy in which
domain randomization scales are increased based on agent
performance. Curricula on environments have also been
demonstrated in locomotion context; [22], [28], [33] applied
a curriculum on terrains to learn highly robust walking
controllers on nonflat ground. [38] evaluated terrain curricu-
lum strategies, including adaptive curricula, in the setting of
stepping stone traversal with a physically simulated biped.

VI. DISCUSSION

This work has shown that a neural network controller
trained fully end-to-end in simulation can push a small
quadruped to the limits of its agility, achieving omindi-
rectional mobility competitive with well-engineered model-
predictive controllers in the regime of high speed. Because
our controller uses minimal sensing, we are able to imple-
ment it on a low-cost robot [18] with commercially available
analogues [1]. Our method can therefore be readily tested and
built upon by others using relatively accessible materials.

Our ability to fully characterize the robot’s outdoor per-
formance was limited by instrumentation and repeatability.
We cannot use motion capture to record the robot’s state
outdoors, as we do in the lab. Also, it is unsafe and
impractical to record a large number of high-speed trips on
the real robot. This forced our analysis of the robot’s outdoor
behavior to be more qualitative, while we performed our
quantitative analysis in the laboratory setting.

The behaviors we demonstrate in this work are diverse, but
still limited relative to the full space of possible locomotion
tasks. The system we demonstrate has only been trained
for the task of controlling the robot’s body velocity in the
ground plane. Other categories of behavior such as jumping,
choreographed dance, and loco-manipulation would poten-
tially require a very different task specification. Our system
also does not use vision, so in general it cannot perform tasks
that require planning ahead of time, like efficiently climbing
up stairs or avoiding pitfalls.

Finally, we emphasize that while our system demonstrates
high speed, its distinctive locomotion gait should not be
interpreted as generally “better” than the many possible
alternatives. To the contrary, many designers wish to opti-
mize for objectives beyond speed, such as energy efficiency
or minimization of wear on the robot. Body speed alone
is an underspecified objective, meaning that many equally
preferable motions may attain the same speed. To combine
learned agile locomotion with auxiliary objectives or human
preferences remains a promising direction for future work.
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