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Abstract— In this work, we show the implementation of a
control framework for non-gaited legged system control. The
presented approach decouples the gait optimization from the
motion stabilization treating the contact phase as a decision
variable. The system has been tested against the state-of-the-
art Mixed Integer Quadratic Programming solver and verified
in various simulation environments.

Paper Type – Recent Work [1].

I. MOTIVATION

This work assesses the open challenge of gait optimiza-
tion for a legged robot system. Prior works showed the
capabilities of Model Predictive Control (MPC) based con-
trollers, like the one used in [2] and [3], to stabilize legged
robots and perform dynamic and robust walking. However,
these approaches do not include the contact sequence in
the optimization problem to satisfy the real-time constraint.
Precisely, including also the contacts implies the use of the
linear complementarity constraint, which significantly affects
the optimization’s speed because it does not respect the
linear independence constraint qualification [4]. Although
there were researches like [5] and [6], which considered
the contact sequence inside the optimization framework, they
were restricted to only offline usage due to computation time.
Besides, the proposed approach decouples the gait sequence
optimization by considering the problem as a decision-
making process. The redefined contact sequence problem
is solved with significantly decreased computation time by
utilizing a Monte Carlo Tree Search (MCTS) algorithm that
exploits optimization-based simulations to evaluate the best
search direction.

II. CONTROL FRAMEWORK

The overall framework is shown in Fig. 1. The user inputs
are ẋ and ẏ, which are respectively the target velocity in the
x and y directions, and ψ̇ is the target yaw rate. The reference
trajectory for the system is created by integrating the user
target speeds, and the footholds reference are generated by
using a heuristic method as in [7]. The MCTS then uses
the current contact information and robot states with the
reference trajectory to generate the contact sequence used
by the MPC. Now, MPC solves the optimization problem
and generates the ground reaction forces (GRF) and future
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Fig. 1. Diagram of overall control framework. The ẋuser is defined as
the x, y, yaw directional velocity input from the user. The xest and ẋest

is the estimated state values (we used the true values from the simulation
in this work).

footholds to track the desired trajectory. Finally, the GRF,
feet positions, and velocities are fed into a joint space
PD controller. Between these procedures, the MCTS is
employed to optimize the gait sequence utilized in the overall
control framework where its procedure is summarized in
Fig. 2. The algorithm creates a tree search where each
node represents one of the possible choices for the con-
tact configuration. Starting from the root node representing
the current contact situation, each node deeper in the tree
represents the sequence of choices that constitute the gait
prediction for the time horizon. At each iteration of the tree
growing process, starting from the most promising node,
new nodes are expanded considering all the available options
(e.g., 16 combinations of possible contact configurations for
quadrupeds). The proposed tree search algorithm implements
two main policies: simulation and tree policies.

The simulation policy, which is used for node evaluation,
solves a constrained optimization problem. The cost function
is formulated as the weighted sum of the error on the
state and control vector regarding the reference, while the
approximated system dynamics define the constraints. The
solution of the optimization, J̃k, is utilized in equation (1)
to finally evaluate the contact sequence:

Fig. 2. Iterative growing process of the MCTS
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Fig. 3. The average cost of the MIQP and the MCTS on graph (a) and
the relative solving time for the two algorithms on graph (b).

Fig. 4. (a) Cost comparison of MCTS with predefined gaits over target
speed variation. The x-axis is the target speed while the y axis, in logarithmic
scale, is the average running cost of the MPC evaluated at steady state. (b)
Fraction of failed simulation at a defined disturbance magnitude with the
system target speed at 0.5m/s

J =

Nstep∑
k=1

{J̃k +Rc · (Nleg −
Nleg∑
ileg=1

cileg,k)}, (1)

where J̃k Rc is the weight relative to the contact cost, and
cileg,k is the binary variable representing the contact state for
the ith leg in kth step. Additional term Nleg−

∑Nleg

ileg=1 cileg,k
in equation (1) minimizes the leg’s air-time, which increases
the stability of the solution at lower target speeds.

The other policy defined in the MCTS is the tree policy.
This is used to traverse the tree and so define the most
favourable searching direction. In our approach, inspired by
[8] and [9], we defined the low confidence boundary policy
(LCB), equation (2), to direct the tree policy.

LCBinode
= J̄ inode

− c ·

√
logNinode

ninode

, (2)

This is a simple yet effective heuristic equation that links the
number of nodes that has been simulated, with the confidence
we have in its evaluation. Thank to this approach the MCTS
is able to balance between exploration and exploitation of
the search space.

TABLE I
ROBOT AND FRAMEWORK PARAMETER

Parameter Value Parameter Value
m 19 kg Body Width 0.2 m
I diag(1e-2[9 60 67])Kgm2 Body Length 0.6 m

Fig. 5. Robots with different limb layout show different gait resulting from
the MCTS

Fig. 6. Simulation of the robot on a treadmill, the floor under the left legs
move at a speed vt. The portion of the treadmill highlighted in red has a 0
friction coefficient

III. SIMULATION RESULT

The proposed algorithm is verified in various simulation
environments with a quadrupedal robot simulated in the
Raisim simulator [10], where the parameters of the robot are
summarized in Table I. To show the benefit of the MCTS,
we compared the resultant cost from the MCTS with the one
calculated by a mixed-integer quadratic programming solver,
GUROBI [11]. This solver has been chosen for comparison
since it can handle the same optimization problem described
for the simulation policy of the gait planner. As shown in
figure 3 while the resulting cost is comparable, the solving
time of the MCTS is significantly lower, up to 3 times. On the
other hand, we also show the benefit of the proposed frame-
work compared to the conventional fixed gait algorithms in
terms of efficiency and robustness. In figure 4 we show the
comparison with fixed gaits like trot, pace, and bounding.
Tracking and efficiency of the system at various speeds were
considered a metric for comparison. Furthermore, to tackle
the robustness of the controller, we perturbed the robot with
pushing forces of increasing magnitude and recorded the
number of failures. In both tests, the MCTS outperformed
the fixed gait on all metrics. The simulation campaign also
included the test on robots with different limb layouts. In
particular, we show in figure 5 two examples of different
periodic gaits naturally emerging. The MCTS could exploit
and adapt to the different layouts without any expert tuning.
Finally, the framework’s robustness has been further tested
using a treadmill with different sections, as shown in figure 6.
The left portion of the treadmill has a velocity vt = 0.5m/s
where a portion highlighted in red has no friction, while
the right side has no velocity. The robot has no information
about the environment and relies only on proprioceptive data
but still tracks the desired trajectory with no difficulties.
Those simulations and further result are shown in the video
at https://youtu.be/4nWE4-Q4pBk

https://youtu.be/4nWE4-Q4pBk


IV. CONCLUSION

In this work, we presented a novel framework for non-
gaited legged locomotion, where the contact sequence prob-
lem is defined as a decision-making process. In this way, the
gait generation is decoupled from the ground reaction forces
and foothold optimization. The contact sequence optimiza-
tion is then tackled by utilizing an MCTS-based approach.
The modified MCTS exploits the prediction capabilities of
the MPC for the exploration of the possible phases combina-
tion of contacts over a fixed time horizon. The shown simu-
lation results highlight the potential of this approach against
the state-of-the-art MIQP solvers. The results show that the
proposed method can discover periodic gaits and adapt to
external disturbances and unknown terrain morphology and
characteristics, therefore increasing the system’s robustness.
Finally, it is shown that the framework is easily adaptable to
various robot layouts.
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