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Combining Reinforcement Learning and Trajectory
Optimization for Multi-Contact Motion Planning &

Control of Quadrupedal Locomotion
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Abstract—This work addresses the problem of multi-contact
motion planning for quadrupedal legged robots on non-flat
terrain. A common challenge in this domain is the selection of a
contact schedule (i.e. contact configurations and contact switching
event times) and respective sequences of foothold positions. Our
approach is centered on formulating Markov decision processes
using the evaluation of kinematic and dynamic feasibility criteria
in the form of linear programs and are used in place of physical
simulation. The resulting MDPs are solved using a policy-
gradient-based reinforcement learning algorithm. Specifically, we
train neural-network policies which generate reference foothold
positions, Center-of-Mass poses and velocities as well contact
switching timings. We evaluate our method in unstructured
environments using proprioceptive and exteroceptive sensory
input and on a suite of relevant terrain scenarios such as stairs,
gaps and stepping stones.
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I. INTRODUCTION

In recent years, significant progress has been made in the de-
velopment of techniques for solving the problem of perceptive
locomotion on unstructured terrain for legged robots. Operat-
ing autonomously in such environments requires addressing
the problem of multi-contact motion planning and control.

This work deals specifically with foothold and gait planning
for terrain-ware quadrupedal locomotion on rigid non-flat
terrain. Given a certain parameterization of the terrain, the
objective is to plan when and where to establish contact
between the robot’s end-effectors and the terrain and then
subsequently generate motion trajectories for the swing-feet
and torso. The challenge here, however, lies in that foothold
selection is directly tied to the selection of the gait, i.e.
contact configuration and contact switching event times. As the
gait can heavily impact the overall locomotion performance,
selecting one that is suitable for the coincident terrain, and
with least modelling assumptions as possible, is of paramount
importance if legged robots such as ANYmal [1] are to operate
autonomously in complex environments.

Solving for both gait and footholds simultaneously neces-
sitates performing hybrid continuous-discrete optimizations,
which, can become prohibitively computationally expensive
for executing on-line and on-board during operation. More-
over, such transcriptions of such problems must also in-
corporate elements which ensure the selected footholds and

Fig. 1. The suite of terrains: the baseline Flat-World scenario (left), the
Random-Stairs scenario (bottom center), and composite Temple-Ascent (right)
scenario comprising a set of winding stairs and two derelict bridges containing
stepping-stones and gaps of varying size.

respective feet and torso trajectories are both kinematically
and dynamically feasible.

Within present literature, two broad families of approaches
have become most prominent: 1) Model-based Trajectory Op-
timization (TO) and 2) Deep Reinforcement Learning (DRL).
Indeed, past works addressing terrain-aware locomotion prob-
lems have predominantly used model-based approaches, such
as those employing deterministic optimization techniques [2],
[3], in conjunction with other heuristics [4], to plan motions
for both the base and feet. However newer trends employing
DRL [5], [6] tend to relax many of the modelling assumptions
made but require accurate physical simulation in order to
transfer well to real systems.

We propose a new method that combines state-of-the-art
model-based TO and model-free DRL methods to enable
quadrupedal systems to traverse complex non-flat terrain. Our
formulation consists of a terrain-aware Gait Planner (GP) that
generates sequences of footholds, gait parameters and base
motions that direct the robot towards a target heading. The GP
is realized as stochastic policy parameterized using Neural-
Network (NN) function approximation, and policy search is
performed using state-of-the-art DRL algorithms.

Contributions: a) We introduce a novel method for train-
ing kinodynamic motion planners, which employs a Trajectory
Optimization (TO) technique for determining so-called transi-
tion feasibility between discrete support phases using a coarse
model of the robot. This removes the need for a planner to
interact with both physics and a motion controller during train-
ing, allows the two policies to be trained independently, and
leads to a significant reduction in overall sample complexity.
b) We present results from combining our GP with a state-
of-the-art Nonlinear Model Predictive Controller (NMPC) and
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Whole Body Controller (WBC) and demonstrate sim-to-real
transfer of both elements on a real quadrupedal robot.

This workshop paper partially summarizes the work pre-
sented in Tsounis et al [7]. However, several extensions to the
original work have been made in order to explicitly account for
3D terrain such as stairs etc, as well as use NMPC instead of
RL for realizing the motion planning and control parts. Please
refer to the former for further details regarding all technical
pertaining to the GP that are not included here.

II. METHODOLOGY

The GP serves as a local terrain-aware planner, and uses
both exteroceptive and proprioceptive measurements to gen-
erate a finite sequence of support phases, i.e. a phase plan.
It operates by sequentially querying the planning policy πθP

to generate the aforementioned phase plan. We thus formulate
an MDP in order to train πθP

using DRL, and our objective
is to ensure that the resulting policy learns to respect the
kinodynamic properties and limits of the robot, as well as
contact constraints, when proposing phase transitions. More-
over, we aim to avoid direct interaction with the physics of
the system, and instead craft the transition dynamics of the
MDP by employing a transition feasibility criterion realized
as a TO problem using the frameworks defined in [8] and [9].
Lastly, we avoid explicitly modeling or qualifying the terrain,
as done in [4], [10], and instead directly use measurements of
local terrain elevation. The resulting MDP, allows us to train
πθP

to infer a distribution over phase transitions. The high-
level command to the system is provided as a desired Cartesian
pose and desired step length.

Support Phases: In order to reason precisely about gaits
and transitions between contact supports, we define a parame-
terization thereof that encompasses all necessary information.
We thus parameterize a gait as a sequence of so-called support
phases. Each phase is defined by the tuple

Φ := ⟨RB , rB , vB , rF , cF , tS⟩ ∈ Φ (1)

where cF ∈ {0, 1}4 is a vector indicating for each of
the feet a closed, 1, or open, 0, contact w.r.t the terrain,
rF ∈ R3×4 are the stacked absolute positions of the feet, and
tS ∈ R≥0 defines the time at which the switch to the contact
configuration of the respective phase has occurred.

Support Phase Transition Feasibility: Transition feasibil-
ity amounts to evaluating if a feasible motion exists between
a pair of support phases Φt,Φ

∗
t+1, where the former is

assumed while the latter is a candidate successor. In our
previous work in Tsounis et al [7] we employed the gen-
eral framework defined in [8] to design a convex LP using
the Convex Resolution Of Centroidal dynamics trajectories
(CROC) formulation. We use a specific variant of CROC to
derive a set of linear equality and inequality constraints, a
trivial cost, a time-discretization of the CoM trajectory, and
incorporates the parameterization of the contact forces into the
decision variables of the optimization. However, one limitation
of using CROC as the feasibility TO is that only static gaits
where able to be generated. In order to overcome this, we
also implemented the convex LP described in Dai et al [9],

 

Fig. 2. An overview of the transition dynamics of the MDP used to train
the GP policy. Both states and actions of the MDP are defined as stance
phases Φt and transitions proposed by the policy are evaluated only on
their feasibility given the TO scheme as well as checks for kinematic limits,
body/torso collisions and validity of footholds.

which, allows for the inclusion of the angular momentum in
the decision variables whilst also directly parameterizing the
centroid’s linear and angular trajectories using a uniform time
discretization instead of employing Bezier curves. Thus, this
alternate solver, henceforth referred as Dai’s LP, allows for
the generation of dynamic transitions and gaits. We defer the
reader to [8] for further details regarding CROC and [9]
for Dai’s LPs respectively. The resulting formulation, either
using CROC or Dai’s LP, allows us to realize the transition
feasibility mapping Ffeasibility : Φ × Φ → {0, 1}. Therefore,
we evaluate the LP for pairs of phases Φt,Φ

∗
t+1, to determine

if the corresponding phase transition is feasible, 1, or not, 0.
Transition Dynamics: We define state transition dynam-

ics for this MDP employing a formalism defining so-called
termination condition functions T (sP,t,aP,t, sP,t+1), which
determine if an episode terminates. By formulating an episode
termination as a transition into an absorbing terminal state, we
can say that, an episode under this MDP, terminates whenever
sP,s+t = sP,s, ∀t > 0. In this MDP, in particular, we employ
the following termination conditions:

1) Tfootholds: Checks for obstacles or gaps within the
vicinity of each foothold using an fixed eight-point grid
surrounding each foot.

2) Tcollisions: Checks for external collisions between the
base and terrain as well as internal ones between the
footholds and the base.

3) Tkinematics: Checks if new candidate footholds are
kinematically reachable for the given joint morphology.

4) Tfeasibility: Evaluates Ffeasibility(Φt,Φ
∗
t+1).

Thus, each step of this MDP proceeds as follows: (1) Given a
state sP,t, the MDP computes the corresponding observation
oP,t and is passed to the agent to select an appropriate action
according to πθP

. (2) The selected action aP,t, is used to
compute the candidate phase Φ∗

t+1. (3) The aforementioned
termination conditions are used to assert if the phase transition
is feasible. This formulation therefore allows the agent to
propose the phase transition directly, while the MDP only
checks if it is feasible and otherwise terminates the episode.
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Fig. 2 provides an overview of the transition dynamics.
Policy Definition: We parameterize the GP’s policy as

a Gaussian distribution with a diagonal covariance matrix.
The mean is output by a NN which inputs both exteroceptive
and proprioceptive measurements into a series of NN layers,
similar to those proposed in [6]. The policy is trained πθP

with a variant of Proximal Policy Optimization (PPO) using
clipped loss and a Generalized Advantage Estimation (GAE)
critic [11].

Policy Evaluation: In order to evaluate our approach, we
crafted a suit of terrain scenarios for training and testing the
GP policies, as depicted in Fig. 1. The first and most basic
scenario consists of an infinite flat plane we refer to as Flat-
World, which we use to establish a baseline for performance
and behavior. Secondly, the Random-Stairs terrain presents a
20 × 20m2 square area consisting of 1 × 1m2 flat regions
of randomly selected elevation. The elevation changes were
generated in a way that results in an effective inclination
diagonally across the map. The third terrain scenario is that
which we call Temple-Ascent, and is a composite terrain
consisting of gaps, stepping stones, stairs as well as flat
regions.

III. MOTION PLANNING & CONTROL

In Tsounis et al [7], we realized the generation and ex-
ecution of motion using an DRL-based neural-network Gait
Control (GC) policy. However, to demonstrate the truly mod-
ular and decoupled nature of our GP policy and respective
training thereof, we instead use the combination of state-of-
the-art NMPC and WBC modules as described in [12] and
[13] respectively.

In brief, the setup works as follows: The GP is first queried
recursively on its own output however many times until the
generated phase sequence fills the time horizon of the NMPC.
The generated contact configurations and foothold positions
are provided to the NMPC, which, subsequently computes and
generates optimized trajectories for the base, swing-feet, and
end-effector contact forces at 20Hz. All quantities from the
head of each trajectory are provided to the WBC in order to
compute optimized joint torques as well as respective joint
position and velocity references at 400Hz. These final joint
references are the ones transmitted to the actuators.

Essentially, we have only replaced the Raibert-like foothold
heuristic used in [12] with the footholds generated by the GP.
In fact, the NMPC and WBC were used mostly unmodified
w.r.t. how they were used in [12] and [13], and only a mere
handful of parameters affected by the gait type were tuned.
Fig. 3 provides a visual depiction of preliminary experiments
conducted on the quadrupedal robot ANYmal overcoming a
test obstacle.

IV. DISCUSSION

In this short summary of our most recent and ongoing
work, we have presented a general framework for training
neural network policies for centroidal pose and foothold
planning for quadrupedal locomotion on unstructured terrain.

Fig. 3. Experimental verification of the GP+NMPC+WBC combination
performed on the quadrupedal robot ANYmal in a laboratory setting. All
frames are extracted from a single continuous trial, however, the left column
corresponds to first stepping up onto the obstacle, while the right column to
the respective descent.

Our experimental verification1 on a real robotic platform, thus
far however, only includes results from training GPs only
using the CROC LP, whilst extending these to dynamic gaits
using Dai’s LP is part of ongoing work and only works in
simulation. Moreover, one notable difference to our previous
work in Tsounis et al [7] is the use of NMPC+WBC in place
of an RL-based GC. Work on the latter has been attempted,
but preliminary results did not prove promising enough to
justify pursuing this direction further at present time. Our main
objectives in extending the work in [7] are to: a) extend to 3D
environments such as stairs, b) experimentally verify sim-to-
real transfer of GP policies, and c) overcome the limitations

1https://photos.app.goo.gl/1kYhyZWQvussAmQC6

https://photos.app.goo.gl/1kYhyZWQvussAmQC6
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of CROC in only being able to generate static gaits. The
use of NMPC+WBC or RL-based for motion control exists
as a separate and independent research direction which is to
be pursued in future work. We thus view the decoupling of
GP and GC realizations as an advantage, in that the former
has the potential to be used in applications where the use of
neural-networks for motion control might indeed prove to be
unnecessary.
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