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Abstract— The Whole-Body Locomotion Framework (WoLF)
is an end-to-end software suite devoted to the loco-manipulation
of quadruped robots. WoLF abstracts the complexity of plan-
ning and control of quadrupedal robot hardware into a simple
to use and robust software that can be connected through multi-
ple tele-operation devices to different quadruped robot models.
Furthermore, WoLF allows controlling mounted devices, such
as arms or pan-tilt cameras, jointly with the quadrupedal
platform. In this short paper, we introduce the main features
of WoLF and its overall software architecture. Paper Type –
Recent Work [1].

I. INTRODUCTION

Nowadays, a lot of emphasis and efforts have been devoted
to autonomous exploration and patrolling of dangerous and
hazardous environments using robotic systems. In particular,
a promising type of platform is represented by quadruped
robots. Quadrupeds are becoming more and more interesting
mostly due to:

• the augmented mobility w.r.t. the wheeled/track coun-
terparts,

• the higher stability and reliability than bipeds, due to a
bigger support base,

• the increased payload w.r.t. drones, with the possibility
to carry manipulator(s) that endow them with manipu-
lation capabilities.

These advantages make them particularly suited to explore
and navigate cluttered and unstructured environments, at
the cost of an increased complexity associated with the
control layer, in particular concerning locomotion, that is
often tailored for a specific robot. Complexity increases when
the robot is equipped with one (or more) manipulator(s) to
perform manipulation tasks. In this case, major difficulties
arise due to the connection of two different robotics systems,
and their synchronous control.

While several companies are now launching on the market
their own quadruped robots, e.g. Boston Dynamics 1, Unitree
Robotics 2, Anybotics 3 and PAL Robotics 4, generic and
robot agnostic control software solutions are not yet avail-
able. In the best of the cases, black box solutions are provided
by some companies to realize high-level navigation for the

1https://www.bostondynamics.com/
2https://www.unitree.com/
3https://www.anybotics.com/
4https://pal-robotics.com/

platform, that cannot be accessed/modified by the user, thus
strongly limiting their flexibility.

The absence of a common and standardized software
framework, together with the high level of expertise required
to control such platforms, prevents end-users to exploit the
full potential of the market of quadruped robots. With WoLF

Fig. 1: WoLF logo.

(Figure 1), we provide a plug-and-play software framework,
easy to tune and adaptable to any quadruped robot without
the need for specific knowledge about locomotion or control.
WoLF is based on established robotics tools and technologies
such as ROS [2], Gazebo [3], OpenSoT [4] and more, to
promote standardization and ease of use. To be able to
connect WoLF to different kinds of quadruped robots, we
designed it to work as a plugin for ros control [5]. The
ros control package permits to easily abstract the particular
hardware for both the quadruped and/or the manipulator and
therefore to re-use the same controller with different robots
provided that they expose an effort interface.

We believe that WoLF could be useful for practitioners,
companies, or research institutions that want to build and
deploy their own solutions based on off-the-shelf quadruped
platforms. According to a report by Mondor Intelligence5, the
Search and Rescue Robots Market is projected to grow with a
Compound Annual Growth Rate (CAGR) of more than 20%.
Another source, Allied Market Research, reported that the
global inspection, and surveillance robots market generated
$940 million in 2020 and is expected to reach close to $14
billion by 20306. Other applications are disaster recovery,
search & rescue, decontamination (e.g. hazardous materi-
als handling), maintenance, human-robot collaboration, and
space exploration.

https://www.bostondynamics.com/
https://www.unitree.com/
https://www.anybotics.com/
https://pal-robotics.com/
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Fig. 2: WoLF block diagram overview. The diagram is composed of four logical layers: the user and navigation input layer,
the walking pattern generator, the whole-body inverse dynamics, and the reactive layer. Each layer is composed of one or
more components. A description of the layers and their components is detailed in Section II.

II. WOLF COMPONENTS

The WoLF project started from the work in [1] about
a novel locomotion framework for quadrupedal robots. In
this seminal work a gait scheduler, a foothold planner and a
whole-body controller was implemented. Starting from that,
WoLF has grown in terms of capabilities adding the possi-
bility to control mounted devices in a whole-body manner,
navigate and map the environment, support diverse input
interfaces and, last but not least, incorporating reactive strate-
gies to increase robustness to disturbances/uncertainties.

WoLF follows the same philosophy of CHAMP 7, and
has been designed with the aim to support most of the off-
the-shelf quadruped robots available on the market, making
them easily integrable into the framework. Differently from
CHAMP, WoLF features support for on-board manipulators.
Furthermore, the framework has been designed with the main
purpose to extend the capabilities of quadrupedal platforms
with manipulation and navigation skills.

A general overview of the various components in WolF is
shown in (Figure 2).

A. User inputs and navigation

The user interface (Figure 2 - A) is the layer exposed
to the user and to the external ROS world, where multiple
control devices (joy-pads, keyboards, GUI, ROS topics and
services, etc...) can be easily connected to have full control
of the robot. WoLF provides a ROS topic interface to send
desired twist commands to the robot’s base which can be
connected to the ROS package move base8 that represents

5https://www.mordorintelligence.com/industry-repo
rts/search-and-rescue-robots-market

6https://www.cnbc.com/2021/12/26/robotic-dogs-tak
ing-on-jobs-in-security-inspection-and-public-safe
ty-.html

7https://github.com/chvmp/champ
8http://wiki.ros.org/move base

the entry point for the ROS navigation stack. The move base
package links together a global and local planner to accom-
plish global navigation tasks such as moving the robot to a
specific point on the map.

In order to allow shared-autonomous navigation, the twist
interface works as a low priority command interface, which
means that at any moment the operator can take full control
of the robot by using the selected input device (joy-pad,
keyboard, spacemouse, etc...). An essential part of the navi-
gation stack is the Simultaneous Localization And Mapping
algorithm (SLAM). With WoLF, we opted to use hector
SLAM [6]: one of the most used and reliable algorithms for
SLAM in robotics. Thanks to the modularity of the ROS
navigation stack and the underlying ROS communication
system, it is possible to easily integrate WoLF with different
SLAM algorithms if needed.

B. Walking pattern generator and reactive layer

The walking pattern generator is one of the main layers of
WoLF. Its purpose is to transform input commands coming
from the user or from the navigation stack into references
for the whole-body inverse dynamics layer. It is composed
of the following components:

• gait scheduler (Figure 2 - B): it coordinates the footsteps
based on the gait schedule,

• foothold planner (Figure 2 - C): it transforms base twist
commands into footholds,

• swing trajectory generator (Figure 2 - D): it calculates
the swing trajectory for the feet based on the desired
footholds and the estimated terrain slope.

The reactive layer, instead, is composed of the push recovery
and the step reflex components (Figure 2 - G). The push
recovery is based on the mathematical definition of Instanta-
neous Capture Point (ICP) [7]. When a push is detected,
a delta for the footsteps is computed based on the ICP
formulation. From a practical point of view, a push event

https://www.mordorintelligence.com/industry-reports/search-and-rescue-robots-market
https://www.mordorintelligence.com/industry-reports/search-and-rescue-robots-market
https://www.cnbc.com/2021/12/26/robotic-dogs-taking-on-jobs-in-security-inspection-and-public-safety-.html
https://www.cnbc.com/2021/12/26/robotic-dogs-taking-on-jobs-in-security-inspection-and-public-safety-.html
https://www.cnbc.com/2021/12/26/robotic-dogs-taking-on-jobs-in-security-inspection-and-public-safety-.html
https://github.com/chvmp/champ
http://wiki.ros.org/move_base


is determined when the CoM of the robot gets closer to its
support polygon boundary. The sensitivity to the push event
can be adjusted by scaling the support polygon by a scalar
value between 0 and 1. The step reflex, instead, is based
on the work presented by Focchi et al. [8]. When a foot is
swinging in the air, if a contact is detected during the first
half of the swing trajectory, a stepping reflex is triggered and
it generates a new swing motion over the nominal trajectory
to achieve a more stable foothold.

C. Whole-Body Inverse Dynamics

The whole-body inverse dynamics layer (Figure 2 - E)
is in charge to track user/navigation inputs and walking
pattern generator references and transforming them into
torque commands at the joint level. This layer is based
on hierarchical Whole-Body Inverse Dynamics solved using
Quadratic Programming (QP) optimization. In particular, our
formulation can handle as well hardware limitations such
as joint position, velocity, acceleration, and torque limits
which are implemented as inequality constraints in the QP
optimization.

The same QP optimization infra-structure can be used to
handle the presence of one or multiple arms attached to
the robot’s base in a modular plug-and-play fashion. The
user can specify in which frame to control the arms and
if the control is, therefore “whole-body” or not (i.e. if the
movement of the arms affects or not the movements of the
base). For the ease of use, we define two control modes:
WALKING in which the arms are controlled w.r.t. the base
of the robot and MANIPULATION, in which the arms are
controlled w.r.t. the base footprint. The first mode is useful
to reduce the effects of the arm movements when the robot
is moving (improving the balancing of the robot) while
the second mode fully exploits the whole-body architecture
to increase the workspace of the arms. In both cases, the
balance recovery is used to guarantee stability while using
the arms. The user can interact with the arms using any input
device such as a joystick, keyboard, interactive markers, and
so on. In particular, the user sets reference poses for the
controlled frame or motion way-points, that are interpolated
using minimum jerk polynomials.

D. State and Terrain Estimation

The state estimation (Figure 2 - F) uses proprioceptive
sensors (joint positions and velocities) and the Inertial Mea-
surement Unit (IMU) to compute the actual twist of the
floating-base of the robot. In particular, the formulation used
in WoLF considers the so-called Horizontal Frame, namely a
frame that follows the base of the robot while its orientation
is kept parallel to the ground.

With this, the orientation of the Horizontal Frame frame
is given by the IMU, while floating base linear and angular
velocities are computed using a QP from joint velocities,
knowing the active contacts with the environment. The status
of the contacts can be computed from joint torque sensors,
or with contact sensors if these are available in the platform
(Figure 2 - H).

To guarantee stability while walking, the support polygon
is updated at each stance (i.e. when all the feet are in
contact with the ground) and its center is used to generate
a reference for the CoM task. Therefore, the robot will tend
to keep the CoM close to the center of the support polygon.
Instead, the CoM velocities are calculated based on the input
reference velocities so that the base of the robot follows the
desired input velocity. The terrain estimation (Figure 2 - I)
is performed by fitting a plane over the feet at stance. The
estimation can be used to re-orient the friction cones [9] and
the swing trajectories such that the robot can climb up ramps
and stairs [10] without scuffing.

III. SOFTWARE PACKAGES

Fig. 3: Robots currently supported in simulation by WoLF.
From top-left to bottom-right: AnymalC, HyQ, Solo,
Minicheetah, Aliengo, Spot® , Ylo2, Anymal.

The various WoLF packages are hosted on Github. The
entry point to set up and run WoLF on any Ubuntu PC is its
setup package9. The other packages are:

• wolf descriptions10: it contains robot and sensor de-
scriptions used within the framework (Figure 3). It is
possible to use this package to add and try new robots.

• wolf gazebo resources 11: it contains Gazebo models
and other resources to adapt and create customized
simulation environments.

• wolf hardware interface 12: it implements the hardware
interface for ros control to be used with WoLF.

• wolf gazebo interface 13: This is the Gazebo hardware
interface for ros control.

• wolf aliengo interface 14: Aliengo hardware interface
for WoLF.

• wolf ylo2 interface 15: Ylo2 hardware interface for
WoLF.

• wolf navigation 16: This package is used to provide nav-
igation capabilities to WoLF. It integrates and provides
several utilities such as odometry computation, way-
point definition, and so on.

9https://github.com/graiola/wolf-setup
10https://github.com/graiola/wolf descriptions
11https://github.com/graiola/wolf gazebo resources
12https://github.com/graiola/wolf hardware interfa

ce
13https://github.com/graiola/wolf gazebo interface
14https://github.com/graiola/wolf aliengo interfa

ce
15https://github.com/graiola/wolf ylo2 interface
16https://github.com/graiola/wolf navigation

https://github.com/graiola/wolf-setup
https://github.com/graiola/wolf_descriptions
https://github.com/graiola/wolf_gazebo_resources
https://github.com/graiola/wolf_hardware_interface
https://github.com/graiola/wolf_hardware_interface
https://github.com/graiola/wolf_gazebo_interface
https://github.com/graiola/wolf_aliengo_interface
https://github.com/graiola/wolf_aliengo_interface
https://github.com/graiola/wolf_ylo2_interface
https://github.com/graiola/wolf_navigation


IV. APPLICATIONS

Fig. 4: Spot® with a kinova manipulator mounted on its base.
WoLF permits to easily combine quadruped platforms with
different robotic manipulators. In this example, the kinova
end-effector is tele-operated with a ROS interactive marker.

In this section, we list some of the possible applications of
the framework to use cases that are nowadays of increasing
interest for the end-users.

Fig. 5: AnymalC navigating and reconstructing the map in
simulation scenario.

Applications range from nuclear decommissioning to min-
ing, search & rescue, inspection, and surveillance. In addi-
tion, this technology can be applied to flank human workers
in order to reduce labor accidents, as well as in elderly
care and space exploration. The main focus for most end-
users is the ability to operate either autonomously or semi-
autonomously, through tele-operation.

An accompanying video17 illustrates the main features of
the WoLF framework showing omni-directional locomotion
on uneven terrains, whole-body control with an additional
mounted manipulator, navigation in human-structured envi-
ronments, ramp and stair climbing with different quadruped
platforms.

V. CONCLUSION AND FUTURE WORKS

This short paper presented WoLF, the Whole-Body Lo-
comotion Framework, an end-to-end software that simplifies
loco-manipulation, mapping, and navigation in quadrupedal

17https://youtu.be/O6TSUHiwSlU

robotics systems. WoLF is based on standard robotics tools
such as ROS and ros control, making it easy to integrate
on existing platforms and tele-operation devices. This al-
lows as well to seamlessly integrate different devices on
the quadrupedal platform, such as manipulators or pan/tilt
cameras.

The interested reader can try out WoLF on its own
machine via the GitHub repository18.

The work has been preliminary tested on a Unitree Aliengo
quadruped platform, to assess if the computational demand
was compatible with a real hardware. We were able to
run the framework at 1 kHz on an external Quad Core
i7 laptop while sending torque commands to the robot.
Future works will regard the possibility to perform more
dynamic motions such as jumps, improvements on the loco-
manipulation capabilities (when mounting a manipulator), as
well as experiments on the real platforms.
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