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Abstract— Navigation planning for legged robots has distinct
challenges compared to wheeled and tracked systems due to
the ability to lift legs off the ground and step over obstacles.
While most navigation planners assume a fixed traversability
value for a single terrain patch, we had previously proposed a
reachability-based navigation planner for legged robots, which
approximates the robot morphology by a set of reachability and
body volumes. It uses a learned convolutional neural network
to restrict valid footholds to feasible regions and incrementally
builds a probabilistic roadmap graph for fast planning queries.
We extend this work using an additional neural network trained
in simulation, which predicts locomotion cost and risk over
a given terrain. This produces safe and low-cost paths and
increases planning speed by leveraging batched processing
of the cost prediction network on GPU to rapidly validate
navigation graph edges through locomotion risk thresholding.
We deployed this navigation planner in team CERBERUS’
winning entry to the DARPA Subterranean Challenge finals,
where the proposed planner powered the local navigation of
four ANYmal quadrupeds during all three competition runs
without a single navigation failure.

Paper Type – Original Work.

I. INTRODUCTION

Navigation planning for legged robots has distinct chal-
lenges which are not present for other types of robots.
While flying robots attempt to avoid any contact with the
environment, ground robots by definition require contact
with the ground to locomote. Compared to other types of
ground robots, which have a constant contact patch with the
ground, legged robots can overcome obstacles by lifting their
legs. Most traditional navigation planning approaches assume
a single traversability value for any given terrain patch,
which they check against the footprint of the robot [1], [2].
These approaches are limiting for legged robots due to their
ability to change their footprint and choose contact locations
with the environment deliberately. Therefore, in previous
work [3], we have chosen to apply a different, simplified
robot representation when planning for legged systems, based
on limb reachability abstractions [4]. We represent a robot
as one collision volume for its torso, and one reachability
volume for each of its limbs. When checking the feasability
of a given robot pose, we expect the torso volume to be
collision-free, while we enforce collision for the reachability
volume, to ensure that the robot is able to make environment-
contact with its legs.
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Fig. 1: Team CERBERUS won the DARPA Subterranean Challenge
with four ANYmal quadrupeds deployed during the final run. The
navigation planner presented in this work guided all four robots
safely during the hour-long mission.

While this approach relies purely on geometric terrain
information, it also enables the inclusion of semantically
derived quantities into the planning process by maintaining
separate maps for torso and reachability collision checking.
While visual semantic information can be used [5], [6], we
trained a convolutional neural network (CNN) to predict
foothold scores from the planner map and only allow safe
regions to support footholds by removing unsafe terrain from
the reachability collision map [3]. This generally produces
feasible paths, but the shortest path cost used leads to
paths close to walls and edges, which can be risky due to
imperfect path following and uncertainty in the environment.
Therefore, we extend our method by instead optimizing a
learned motion cost [7], [8] which is computed by a CNN
which predicts traversal risk and cost from a height map.

Since we are interested in a navigation planner which
can work in possibly unknown environments, it will use
information from an onboard mapping pipeline which is
continuously updated as the robot moves. We therefore
require a fast update rate for our planner to keep up with map
updates. In our previous work [3], we built a PRM*[9] plan-
ning graph incrementally by maintaining a planning graph
between planning queries, arguing that most map updates in
a static environment will not invalidate the planning graph.
This approach necessitates graph maintenance between map
updates which can typically be performed quickly during
normal operation. However, this adds heuristics and algorith-
mic complexity to identify updated graph elements and the
extreme challenges posed by the DARPA Subterranean Chal-
lenge (SubT), like smoke, and dynamic obstacles, triggered
maintenance operations more frequently than previously as-
sumed. This cancelled most of the performance benefits



originally achieved through incremental map updates. We
therefore altered our graph creation method to create a new
graph every time the map is updated: We lazily sample
candidate pose vertices using our density-based sampling
algorithm [3] until we have reached a chosen number of
valid poses. This ensures that we exceed a minimal vertex
density, because we operate on a fixed-size map. We then
validate all graph edges at once by applying a locomotion
risk threshold, leveraging massively parallel execution of the
cost prediction network on GPU.

Note that while batch risk querying for edge validation
would be compatible with our previously used persistent
graph, the error-prone and potentially expensive accounting
for updated graph edges would still be necessary. This, how-
ever means that the algorithm proposed in this work is not
probabilistically complete, because we terminate sampling at
a fixed number of graph nodes. This is a limitation of this
work but has shown to be unproblematic in practice, since the
planner runs fast enough to sample the map densely, while
maintaining real-time update rates.

II. RELATED WORK

Navigation planning for mobile robots is a vast field of
research with a manifold of different approaches.

Most navigation approaches for mobile robots use a ge-
ometric environment representation as their basis for plan-
ning [1], [2], [10], [11]. They use various different terrain
representations for planning, most commonly 2.5D height
maps [1], [10], point clouds [2] or truncated signed-distance
field (TSDF)s [11]. Because planning in full 3D representa-
tions is currently computationally prohibited [12], we chose
to work with 2.5D height maps as environment representa-
tion. Most planning approaches compute a single geometric
traversability value per terrain patch [1], [2] as measure
how easily the terrain can be traversed, irrespective of robot
orientation, even other SubT competitors which deployed
legged robots [13]. Thereby, they neglect the much higher
mobility which legged robots provide due to their ability
to step over obstacles. Other work on navigation planning
specifically for legged robots either only considers cases of
obstacle avoidance on flat terrain [14], [15] or does additional
contact planning, which pushes computational complexity
past the real-time mark [16], [17], [18]. Approaches which
learn traversability [10] or motion cost [7], [8] are powerful,
but are either too slow due to the sequential querying
of neural networks during sampling-based planning [7] or
struggle in tight spaces where precise motion checking is
necessary [8].

We use a reachability-based robot representation [4], [3]
and combine our previous work with batched motion cost
computation. This is the first work which combines geomet-
ric collision checking and learned motion costs in a real-time
capable navigation planner.

III. METHOD

Our approach extends our previous reachability-based
planner [3] using a learned cost prediction network [7], [8]

for faster planning and higher quality paths. We will briefly
outline the components adopted from our previous approach
essential to understanding the new additions and refer to our
previous work [3] for details.

A. Reachability Planning

To check for validity of sampled robot poses, we use a
reachability-based approach [4]. It is based on the notion
that the ground support surface needs to be reachable for
the robot’s legs, while the torso remains collision-free. To
check for this condition, we decompose the robot body into
volumes representing torso collisions and leg reachability.

In order to account for geometry which should not be used
as support surface (i.e. walls), we trained a CNN to predict
a foothold score based on height map information and use
this to constrain the regions considered for valid footholds.
Geometry which has a low foothold score is disregarded for
collision checking of the limb reachability volumes but is
still considered for the torso. A valid pose is therefore a
pose where all reachability volumes are in contact with valid
geometry, while the torso volume is not in collision with any
geometry.

Our planner is based on the sampling-based
LazyPRM* [19] algorithm and only checks the sampled
pose for validity when adding a new node to the graph, but
does not immediately check the validity of newly added
edges. Edge checking in basic LazyPRM* is only performed
when querying a path. In our previous work [3] we also
check the edges part of the optimal solution between a
randomly sampled node and a newly added node but this
was abandoned, as discussed in Section III-C.

We use a custom sampling scheme which uses a 2D pose
sample augmented to a 3D pose using map information and
biases sampling towards regions with low node density.

B. Motion Cost

While our previous work simply used a shortest-path
cost for planning [3] due to the difficulty of analytically
determining locomotion cost and risk, other recent work has
proposed to use a learned neural network to compute cost [7],
[8]. Building upon these works, we use a neural network
which computes the energy and time required and failure
risk associated with moving from a query location in the
height map to a given relative 2D pose [8].

The inputs to the network are a patch of the height map
centered around the robot, the current yaw orientation of
the robot, as well as the 2D goal pose relative to the robot.
The network outputs the time ct and energy ce required to
move to the target pose as well as the motion risk cr, which
is the probability that this transition fails. The network is
trained using data generated in simulation, where the robot
is spawned in a random location on a randomly generated
height map and a goal pose in a certain range around the
robot is randomly selected. We then naively give a directional
command to the robot to move towards this goal pose while
the robot experiences external disturbances. This is repeated
a number of times to compute the failure probability. Time



Lazy
Sampling

N Vertices
- or -

M Edges   
- or -

T Seconds

until

Unchecked
Graph

Risk
Threshold

Cost
Computation

risk
time

energy

Height
Map

Graph
Edges

Edges
Unchecked
Invalid - High Risk
Valid - High Cost
Valid - Low Cost

Vertices
Valid
Invalid - Rejected
Start
Goal

Optimal Solution

Fig. 2: After every map update we lazily sample a planning graph until a set number of vertices or edges is reached or a time threshold
has been exceeded. The height map and planning graph are then fed to a neural network, which computes the motion risk and cost for
every graph edge. High risk edges are removed from the graph and we perform an A* query to find the optimal path.

and energy values are averaged over all attempts which
successfully reached the goal.

The risk value is used to determine validity of planning
graph edges, while the graph edge cost is computed as a
weighted sum of time ct, energy ce and risk cr:

c = wt · ct + we · ce + wr · cr (1)

ct and ce are normalized with their respective maximal
value in the training dataset, whereas cr expresses the
probability of failure. Battery runtime of the ANYmal robots
was not of concern and energy consumption ce showed to be
highly correlated with time ct, so we chose to disregard this
cost term. Since any navigation error would be potentially
mission-ending during the SubT Finals, we put a high weight
on risk. Consequently, our chosen cost weights were wt := 1,
we := 0 and wr := 5.

C. Graph Construction

We construct our planning graph using lazy sampling,
where only the added vertices but not edges are immediately
checked for validity. When querying a solution in a regular
LazyPRM* graph, an A* search is performed and all edges
which are part of the optimal solution are checked for
validity. Any invalid edges are removed from the graph
and the process is repeated until either all edges returned
by the A* search are valid (success), or the start and goal
vertices are no longer connected (failure). This makes the
path query time highly non-deterministic since the number
of A* search iterations strongly depends on the complexity
of the environment which determines the number of invalid
edges. As discussed in our previous work [3], this can lead to
excessive planning times which make real-time applications
impractical or impossible. While our previously suggested
graph expansion method [3] can compensate for this issue in
most cases, during extensive real-world testing in preparation
for the SubT challenge we still encountered some instances
of long planning times in difficult environments where the
number of invalid edges in the graph is exceedingly large.

To achieve consistent and low planning times, we therefore
leverage batched edge cost computation using our motion

cost network, detailed in Figure 2. Every time a new planning
query is received and the map has updated, we build a new
planning graph by lazily sampling until the graph exceeds
either N valid vertices, M unchecked edges or we have
sample for more than T seconds. Since the number of edges
determines the batch size for the cost query, its upper bound
limits the maximal computation time used by the cost query
which validates graph edges. The other two termination
criteria prevent unnecessarily long and dense sampling in
certain environments where either the traversable area of the
map is very small (T limit) or the geometry allows every
node to only have a small number of neighbors (N limit),
like in narrow corridors.

A batched query of the cost network is then performed
for every edge in the graph at once, which can be executed
efficiently on GPU. Edges which exceed a risk threshold R
are removed and valid edges are assigned a cost, according
to Equation (1).

We now have a fully validated graph with assigned edge
costs and consequently, a single A* search will return the
the optimal path between two query nodes.

IV. RESULTS

A. DARPA Subterranean Challenge

The DARPA Subterranean Challenge (SubT) Finals took
place from September 21th - 24th in the Louisville Mega
Caverns in Kentucky, USA. Eight participating teams com-
peted for a $5 million prize purse and deployed autonomous
systems to map, navigate and search underground tunnel,
urban and cave spaces, which had been constructed inside
of the Mega Caverns.

In each competition run, teams were required to find a
number of known artifacts, like backpacks or cell phones,
which were hidden inside the course in unknown locations,
and report their identity and position with an accuracy of 5m.
One point was awarded per correctly reported artifact, while
the number of reporting attempts was limited to avoid brute-
forcing the solution. Only a single operator was allowed to
remotely supervise all robots and no network connectivity
inside the competition area was available, unless created by
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Fig. 3: Planning times for four navigation planners on data from
the SubT Finals Prize Run.

the robots. Hence, robots had to operate autonomously for
large parts of the competition.

Three competition runs were spread over the three days of
the finals, two 30 minute pre-rounds and a 60 minute grand
final which was the only run used to determine the winners.

Team CERBERUS deployed four ANYmal [20] robots
as part of their solution, which ran the navigation planner
proposed in this work guided by waypoints from a global
exploration planner (GBPlanner2) [21].

B. Computational Performance

We compare the computational performance of ArtPlanner
to our previous work without motion cost [3], a planner
based only on motion cost [8] as well as the exploration
path, refined by a cost optimizer [8]. We feed all planners the
same data recorded during the competition Prize Run, played
back on a desktop machine with an Intel i7-8700K CPU, a
Nvidia RTX 2080 GPU and 32 GB of RAM. Planning times
are shown as box plots in Figure 3. Our chosen target update
rate was to publish a new path every 2 seconds and the real-
time threshold for our 8m×8m map at a locomotion speed
of 0.9m s−1 was 4.44 s. The real-time threshold [3] is the
time the robot requires to reach the edge of the height map
at maximal speed.

We set ArtPlanner’s maximal sampling time T to 2 sec-
onds, which does not factor in map processing and motion
cost query time. Therefore, ArtPlanner can exceed the target
time if the maximum sampling time is reached, with a
maximal planning time of 4.65 s. Consequently, we achieved
the target time in 75% of cases, exceeding the real-time
threshold only a single time, by 0.21 s. The No Motion Cost
planner has fast query times in the median. Unfortunately,
this method can produce severe planning time outliers on
rare occasion due to the graph validation at query time, as
discussed in Section III-C. We observed a time of 26.53 s
in the data we used to generate Figure 3 but observed even
longer times in other instances. This shows the benefit of our
graph validation method through batch motion cost query.
We can limit our planning time and can therefore avoid
the planner being unresponsive for a long period of time.
The Motion Cost Planner uses a fixed planning graph and
therefore only has to perform a batch motion cost query,
but no sampling. Since the optimization stage also always
performs a fixed number of iterations, planning is fast and the
target time can be reached in all cases. Since the Exploration

(a) Successful planning in narrow and cluttered tunnel section of the SubT
course.

(b) Very low ceiling in the cave section produces artifacts in the height map.

Fig. 4: Onboard data recorded during the SubT final run. The left
column shows an image from the forward-facing RGB camera. The
right column visualizes mapping and planning data. The height
map has geometry with low foothold score colored in black, while
white indicates steppable terrain. The thick green arrows show the
reference path computed by the exploration planner, which serves
as goal for our navigation planner. The sequence of coordinate axes
is the path output by our planner.

Path w/ Cost Optimizer only deploys the optimization stage
of the Motion Cost Planner it is even faster.

Overall, all evaluated planners would be fast enough for
real-time operation in the nominal case. However, the worst-
case time of the No Motion Cost planner is too long to deploy
it in a competition environment.

C. General Performance

Team CERBERUS won SubT and all four robots finished
the final hour-long mission in an operational state with
no navigation failures. We only observed a single incident,
where one robot briefly got stuck on a thin, vertical pole,
when the computed collision-free path was not properly
followed by the path tracker. This was due to a software bug
in the path follower, discovered only after the competition,
which caused a 300ms delay before accepting new paths.

Other than that no collisions with the environment were
observed and our planner was crucial in ensuring robustness
of our autonomy solution. The exploration planner, which
uses a very simple collision model on a much coarser
map, frequently proposed paths which would have lead to
collisions, which our navigation planner prevented, as shown
in Figure 4(a).

The biggest challenge for the planner was the very low
ceiling height which barely exceeded the stance height of
the robot in some parts of the course. This was lower than
we anticipated and lead to severe artifacts in the height map,
as shown in Figure 4(b). While the robots were still able to
plan, the short planning distance and the fixed update rate
lead to slow progression in these sections.



REFERENCES

[1] M. Wermelinger, P. Fankhauser, R. Diethelm, P. Krüsi, R. Siegwart,
and M. Hutter, “Navigation planning for legged robots in challenging
terrain,” in IROS. IEEE, 2016, pp. 1184–1189.
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