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Abstract— This paper proposes a model predictive control
(MPC) framework for realizing dynamic walking gaits on the
MIT Humanoid. In addition to adapting footstep location and
timing online, the proposed method can reason about varying
height, contact wrench, torso rotation, kinematic limit and
negotiating uneven terrains. Specifically, a linear MPC (LMPC)
optimizes for the desired footstep location by linearizing the
single rigid body dynamics with respect to the current footstep
location. A low-level task-space controller tracks the predicted
state and control trajectories from the LMPC to leverage the
full-body dynamics. Finally, an adaptive gait frequency scheme
is employed to modify the step frequency and enhance the
robustness of the walking controller. Both LMPC and task-
space control can be efficiently solved as quadratic programs
(QP), and thus amenable for real-time applications. Simulation
studies where the MIT Humanoid traverses a wave field and
recovers from impulsive disturbances validated the proposed
approach.

Paper Type – Recent Work [1], under review
Video – https://www.youtube.com/watch?v=uZKZeOnrJ2g

I. INTRODUCTION

Stepping strategy is one of the most critical considerations
for stable bipedal walking control, especially in the presence
of external disturbances and on uneven terrains. Humanoid
robots should rapidly plan footsteps that help regulate center
of mass position and torso orientation to avoid falling. Those
footsteps should respect kinematic limits and account for
terrain irregularities. However, simultaneously fulfilling these
potentially conflicting requirements in real-time is still not
trivial.

The Linear Inverted Pendulum Model (LIPM) [2] is widely
used for bipedal walking control, where the robot is treated
as a point mass moving with constant height. Leveraging
the analytical solutions of LIPM, center of mass (CoM)
trajectories can be generated from Zero Moment Point [3]
based control methods [4] [5]. Despite the success of this
method, applying it on non-flat terrain requires substantial
modification [6]. The capture point (CP) is a point on the
ground where a biped can step on to come to a stop.
Under the assumption of LIPM, the CP has a closed-form
analytical solution [7]. The inertial effect of torso and limbs
is approximated by the LIPM with flywheel model [8], [9].
However, regulating the flywheel with a bang-bang controller
may not be a practical method due to limited actuator
bandwidth. The CP-based method has also been extended
to the cases of varying terrain heights [10] and non-linear
CoM path [11] without accounting for angular momentum.
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Terrain profile: 𝑧 = 0.12 + 0.01 sin(2𝑥)

Fig. 1: Snapshots of the MIT Humanoid traversing a wave field.
The red dots on the terrain indicate the desired footstep locations
produced by the linear MPC.

Model Predictive Control (MPC) with footstep adaptation
has been recently explored in nonlinear MPC (NMPC) [12]
and Regularized Predictive Control (RPC) [13]. The major
advantage is the capability to consider stepping, rotational
dynamics and kinematic limits in a unified optimization
framework. Nevertheless, both NMPC and RPC involve solv-
ing a nonlinear program (NLP), which is challenging to solve
with on-board computation at a high rate. Real-time non-
linear MPC requires extensive tuning, and the optimization
can get stuck at undesirable local minima. As an alternative
to solving an NLP, mixed-integer convex program (MICP)
is applied on quadruped locomotion in [14] to approximate
the bilinear term from the cross product of contact location
and GRF with McCormick envelope [15]. Although MICP
grants a global optimality certificate, the solve time grows
exponentially with the number of binary variables, making
it unsuitable for real-time applications.

The main contribution of this paper is a humanoid walking
controller that optimizes the next step location with a linear
model predictive controller (LMPC), which can be reliably
solved in real-time as a QP [16]. The LMPC can reason about
footstep, varying CoM height, rotational dynamics, kinematic
limit and uneven terrain within a unified framework. The
state and control inputs from LMPC are processed by a
finite state machine and posed as tracking tasks passed to a
Task-Space Controller (TSC) [17] to leverage the full-body
dynamics of the humanoid. The joint torque from the TSC
is applied in the humanoid dynamics simulator. In addition,
a heuristic gait frequency adaptation scheme is employed to
enhance the robustness of the walking controller.

https://www.youtube.com/watch?v=uZKZeOnrJ2g


II. LINEAR MPC WITH STEP LOCATION ADAPTATION

This section details how the canonical LMPC is adapted to
reason about multiple aspects of bipedal walking, in partic-
ular footstep location, in a unified optimization framework.
The LMPC can be formulated as an optimization problem
with quadratic objective and linear constraints

min.
uk,xk

ℓN (xN ) +

N−1∑
k=0

ℓk(xk,uk)

s.t. xk+1 = Axk +Buk

xk ∈ X,uk ∈ U, k = 0, · · · , N − 1

x0 = x(t),

(1)

where x ∈ Rn and u ∈ Rm denote the state and control
variables, respectively; N is the prediction horizon and k
indicates the time step; ℓN and ℓk are the quadratic terminal
and stage costs, respectively; A and B are constant matrices
that propagate the discrete linear dynamics through the
prediction horizon as a linear time-invariant (LTI) system;
polyhedron sets X and U delineate the linear inequality
constraints on the state and control, respectively.

A. System Modeling

The robot system dynamics is considered as a single
domain hybrid system. The continuous dynamics concern
the SRB template, and the discrete jump captures the effect
of taking a step. The hybrid system Σ is defined as

Σ :

{
ẋ = f(x,u), t /∈ S,
x+ = ∆(x−), t ∈ S,

(2)

where the continuous-time dynamics is ẋ = f(x,u); the
discrete transition x+ = ∆(x−) maps the state x− to x+

on the guard of the hybrid system S. In this work, S is
the stepping time within the prediction horizon, which is
determined by a gait schedule. For simplicity, the robot is
assumed to be always in single support phase with zero
aerial phase. The step location change is assumed to be
instantaneous and has no immediate effect on the CoM
positon and velocity.

During the continuous-time domain of (2), the SRB model
is utilized to model the MIT Humanoid. Despite the design
effort to place the heavy actuators close to the torso [18],
the inertial effect of moving limbs is not negligible. Never-
theless, the composite inertia varies by less than 15% during
walking; the dominating effect is the SRB dynamics

ẋ =
d
dt


pc

Θ
ṗc

Θ̇
c

 =


ṗc

Θ̇
M−1(F + ag)

BI−1((c− pc)× F +m)
0

 , (3)

where pc ∈ R3 is the CoM location; Θ ∈ R3 is the roll-
pitch-yaw angle representation of the robot torso; c ∈ R3 is
the current step location, where the contact foot produces
a wrench u = [F⊤,m⊤]⊤; ag = [0, 0,−g]⊤ is the
gravitational acceleration vector; M is the lumped mass and

BI is the constant inertial tensor expressed in the body
frame. Note that the state x is augmented with the current
step location c, which is at the origin of the foot frame.
The ground reaction wrench (GRW) u is comprised of force
F ∈ R3 and moment m ∈ R3, which are applied at c.

B. Discrete Linear Dynamics

The nonlinear dynamics f defined in (3) is linearized and
discretized through forward Euler integration as

xk+1 = Axk +Buk + d. (4)

The matrices A,B,d are defined as follows

A = 1+ Ts ·
∂f

∂x

∣∣∣∣
t

∈ Rn×n (5)

B = Ts ·
∂f

∂u

∣∣∣∣
t

∈ Rn×m (6)

d = Ts · f(xt,ut)−Axt −But ∈ Rn, (7)

where Ts is the prediction time step; 1 is the identity matrix;
xt,ut are the state and control vector at the current time.

C. Step Location Adaptation

Augmenting the state with c allows the MPC to reason
about stepping strategy in a unified optimization framework.
Specifically, the effect of taking a step δc on the dynamics
can be quantified as Acδc, where Ac ∈ Rn×3 is the last
three columns of A.

Unlike the control uk, which is present at every k, δc
only appears when there is a scheduled stepping. Based on
the gait schedule and current gait phase, a boolean vector η ∈
{0, 1}N is introduced, where ηk = 1 indicates a scheduled
step and ηk = 0 otherwise. The discrete linear dynamics (4)
is updated to take into account of stepping

xk+1 = Axk +Buk + d+ ηkAcδci, (8)

where the subscript i ∈ {1, 2} indicates the order of the steps.
There can be either one or two scheduled steps within the
prediction horizon, which is usually chosen to be slightly
longer than the stance time in practice. Such choice helps
to mitigate excessively aggressive stepping, because when
the next scheduled step is forthcoming, another stepping
opportunity will appear towards the end of the prediction
horizon.

In addition, having δc as part of the decision variables
enables the robot to negotiate sloped terrains. Suppose the
nearby terrain can be estimated as a plane P , then the
following linear equality can be imposed one new step
location

ct + δci ∈ P := {c ∈ R3|AP · c = bP}, (9)

where ct is the current step location; AP , bP parametrizes
the plane approximation of the terrain arounx c. P can
be updated iteratively to generalize the LMPC to arbitrary
uneven terrains, such as the wavefield shown in Fig. 1.



Kinematic reachability constraints can also be enforced.
The step size is bounded to prevent the robot from taking
too large a step

|δci| ≤ i · δcmax, i ∈ {1, 2} (10)

where the step order index i scales the maximum step size
δcmax proportionally. That is because δc2 is defined as the
vector pointing from the current step location to the second
predicted step location. Furthermore, leg over-extension is
prevented by imposing constraints on r, the vector from the
CoM to the step location. At time step k, rk = c+δci−pc,k

is bounded by

|rx/yk | ≤ rx/ymax + (1− ηk) ·Mb, k = 1, · · · , Nle, (11)

where r
x/y
max is the maximum displacement of the new step

from the CoM projection on the ground plane; ηk is the
binary indicator as in (8); Mb is a sufficiently large positive
number such that constraint (11) is only activated when the
robot is scheduled to take a step (ηk = 1). To prevent over-
constraining the optimization, (11) is only imposed for a few
steps Nle < N , where the state prediction from the linearized
SRB model is sufficiently accurate.

D. Line-Foot Contact

The MIT Humanoid has under-actuated feet that make line
contacts with the ground. When in a single stance, the foot
in contact cannot generate a moment in the roll direction of
the foot frame {F}. As a special case in [19], the contact
wrench cone (CWC) constraints of line-contact requires

0 ≤ Fz ≤ Fmax
z , |Fx,y| ≤ µ · Fz, mx = 0,

− Fz · lt ≤ my ≤ Fz · lh,
(12)

where µ is the coefficient of friction; lh and lt are the lengths
from the origin of {F} to the heel and toe, respectively;
Fmax
z is the maximum vertical ground reaction force; To

derive the constraints on mz , consider the GRW is instead
produced by two point forces at the heel F h and toe F t.
Solving the following equations

Fy = Fh
y + F t

y ,my = Fh
z · lh − F t

z · lt
Fz = Fh

z + F t
z ,mz = F t

y · lt − Fh
y · lh,

(13)

and plugging the expressions of Fh
y , F

t
y , F

h
z , F

t
z to the

friction constraint |Fh/t
x,y | ≤ µF

h/t
z , one can derive the

linear inequality constraints on mz . Collecting all linear
inequalities related with line-foot contact to matrices Acwc

and bcwc, the admissible control set U can be defined as
{u | Acwc · Fu ≤ bcwc}. The proposed LMPC works
for robots with point foot or passive ankle by shrinking
lh, lt to zero. The additional control authority of line-contact
contributes to stabilizing the dynamical effects that are not
captured by the SRB model.

III. HUMANOID MODEL AND CONTROL

A. Humanoid Model

The MIT Humanoid is a 24 kg robot with high torque
density and high bandwidth control capability. The humanoid
model has 24 degrees of freedom (DoF), with 18 actuated
DoFs (5 DoFs for each leg and 4 DoFs for each arm)
and the floating base coordinate. The robot configuration is
described by q = [q⊤

b , q
⊤
a ]

⊤, where qb is the un-actuated
torso pose and qa is the configuration of the actuated joints.
The standard dynamic equations of motion are

H(q)q̈ +C(q, q̇) = S⊤
a τ + J⊤

c (q)u, (14)

where H ∈ Rn×n is the mass matrix; C(q, q̇) incorporates
the centripetal, Coriolis and gravitational terms; u ∈ R6

is the GRW and Jc ∈ R6×n is the corresponding contact
Jacobian matrix. The matrix Sa = [018×6,118×18] is the
selection matrix for the actuated joint torque vector τ ∈ R18.
The humanoid model is constructed using Spatial V2 [20]
with rotor inertia.

The humanoid model is utilized in a low-level controller
to track the tasks produced by the LMPC while exploiting
the full-body dynamics of the humanoid robot.

B. Adaptive Gait Frequency

Adapting gait frequency is a crucial aspect of robust
bipedal walking. Prior works on step timing and duration
adaptation [21], [22] rely on LIPM, which is not applicable
in this work. Hence, a heuristic adaptive gait frequency
(AGF) scheme is presented in this section to augment the
optimization-based LMPC. The design of AGF is an open-
ended question since it is based on heuristic rules. Some
example heuristics are: return to the nominal gait frequency
by default; increase gait frequency when torso acceleration
p̈c is high due to external push; decrease gait frequency
as the angular momentum increases since it is likely to be
induced by fast-moving limbs. The following rule encodes
the aforementioned heuristics

K̇ = Ck(1−K) + Cp̈c
||p̈c||2 − CkG

||kG||2

K̇lb ≤ K̇ ≤ K̇ub,Klb ≤ K ≤ Kub,
(15)

where K is a gait frequency scaling factor; scalars C > 0
are user-tuned parameters; subscripts lb and ub represent the
lower and upper bounds, respectively. Note that the factor K
scales both the gait frequency and the prediction step time.
Namely, K > 1 shortens the prediction horizon and vice
versa.

IV. RESULTS

A. Simulation Setup

The full-body dynamics simulation is performed in MAT-
LAB using ode45 with an event-driven finite state machine,
and robot motion is visualized in Unity. Gaussian noise based
on the sensor hardware is injected into the state measurement
for realistic simulations.
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Fig. 2: Comparison of stepping strategies in a push recovery
scenario. (a) The CoM position from the LMPC case is projected
to the x-y plane as the blue curve; the red square indicates the
foostep location, and the red line segment represents the foot in
contact. (b) Torso pitch angle (c) Predicted step size. The crosses
indicate that the robot fell over. The red shaded area represents a
disturbance impulse of 28 Ns over 200 ms.

B. Disturbance Recovery

To show the advantage of footstep location optimization in
LMPC, the following three stepping strategies are compared:

• (CP-unbounded) Capture point without kinematic limit
• (CP-bounded) Capture point with max. stride length
• (LMPC) Step location generated by LMPC

The CP stepping policy based on a 3D LIPM with point foot
is used in this experiment. The CP-unbounded policy directly
tracks the CP, whereas the CP-bounded policy tracks the CP
up to a maximum stride length threshold to ensure kinematic
feasibility. In contrast, LMPC regularizes the footstep loca-
tion by penalizing ec in the cost function.

The robot stands still on flat ground, and a disturbance
is applied at the top of the torso in the forward direction.
The push force is 140 N and lasts for 200 ms, an impulse
of 28 Ns. The commanded velocity is zero, so the robot
tries to maintain balance and come to a stop. Fig. 2 (a)
displays the recovery motion of LMPC. As shown in Fig. 2
(b), CP-unbounded failed since the desired footstep location
is beyond the kinematic limit of the robot. Fig. 2 (c) reveals
that although CP-bounded satisfies the kinematic feasibility,
the robot fell due to an over-tilted posture. In comparison,
the LMPC survived the push since it can reason about the
complex coupling effects among stepping, torso rotation, and
contact wrench while respecting the kinematic limit.

C. Traversing Wave Field

The proposed framework enables the MIT Humanoid to
walk across a wave field, as shown in Fig. 1. A sine function
with increasing magnitude parametrizes the terrain profile.
Although the robot is not provided with the terrain profile
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Fig. 3: Simulation result where the MIT Humanoid traverses the
wave field shown in Fig. 1. (a) The swing time (red) changes
with the terrain profile (blue), where the red dashed line marks
the average swing time. (b) The commanded (red dashed line) and
measured (blue) forward velocity; (c) Torso pitch angle.

from vision, it uses proprioceptive sensors, including the
ankle encoder, to estimate the terrain slope at the contact
point. Assuming the terrain height varies only in the sagittal
plane, the LMPC locally linearizes the smooth terrain as a
tangent plane, on which the footstep location is planned.
This terrain approximation is updated as the next contact
is established with the terrain surface.

V. CONCLUSION

The paper presents an LMPC-based locomotion controller
that enables dynamic walking with the MIT Humanoid. Its
major feature is the ability to reason the complex coupling
among important aspects of humanoid walking in a unified
optimization framework. Specifically, the footstep location is
produced by the LMPC while considering contact wrench,
torso rotational dynamics, and varying CoM height. The
solution from the LMPC is posed as tracking tasks and
passed down to a task-space controller to leverage the full-
body dynamics of the robot. Both the LMPC and TSC
are amenable for real-time applications since they can be
transcribed to QP problems. In addition, a gait frequency
adaptation scheme is employed to further enhance the ro-
bustness of the walking controller. The proposed framework
enables the MIT Humanoid to recover from substantial
disturbance and traverse a wave field.
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