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Abstract— Legged robots that can operate autonomously
in remote and hazardous environments will greatly increase
opportunities for exploration into under-explored areas. Ex-
teroceptive perception is crucial for fast and energy-efficient
locomotion: perceiving the terrain before making contact with
it enables planning and adaptation of the gait ahead of time to
maintain speed and stability. However, utilizing exteroceptive
perception robustly for locomotion has remained a grand
challenge in robotics. Snow, vegetation, and water visually
appear as obstacles on which the robot cannot step – or
are missing altogether due to high reflectance. Additionally,
depth perception can degrade due to difficult lighting, dust,
fog, reflective or transparent surfaces, sensor occlusion, and
more. For this reason, the most robust and general solutions
to legged locomotion to date rely solely on proprioception.
This severely limits locomotion speed, because the robot has
to physically feel out the terrain before adapting its gait
accordingly. Here we present a robust and general solution
to integrating exteroceptive and proprioceptive perception for
legged locomotion. We leverage an attention-based recurrent
encoder that integrates proprioceptive and exteroceptive input.
The encoder is trained end-to-end and learns to seamlessly
combine the different perception modalities without resorting
to heuristics. The result is a legged locomotion controller with
high robustness and speed.

Paper Type – Recent Work [20].

I. INTRODUCTION

Legged robots can carry out missions in challenging
environments that are too far or too dangerous for humans,
such as hazardous areas and the surfaces of other planets.
Legs can walk over challenging terrain with steep slopes,
steps, and gaps that may impede wheeled or tracked vehicles
of similar size. There has been notable progress in legged
robotics [24], [13], [10], [17], [22] and several commercial
platforms are being deployed in the real world [3], [8], [1],
[28]. However, until now, legged robots could not match the
performance of animals in traversing challenging real-world
terrain. Many legged animals such as humans and dogs can
briskly walk or run in such environments by foreseeing the
upcoming terrain and planning their footsteps based on visual
information [19]. Animals naturally combine proprioception
and exteroception to adapt to highly irregular terrain shape
and surface properties such as slipperiness or softness, even
when visual perception is limited. Endowing legged robots
with this ability is a grand challenge in robotics.

One of the biggest difficulties lies in reliable interpretation
of incomplete and noisy perception for control. Exterocep-
tive information provided by onboard sensors is incomplete
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Fig. 1. Robust locomotion in the wild. The presented locomotion controller
was extensively tested in a variety of complex environments over multiple
seasons. The controller overcame a whole spectrum of real-world challenges,
often encountering them in combination. These include slippery surfaces,
steep inclinations, stairs, snow, and vegetation with degraded exteroception
The controller traversed these environments with zero failures.

and often unreliable in real-world environments. Generally,
sensors which rely on light to infer distance are prone
to producing artifacts on highly reflective surfaces, since
the sensors assume that light travels in a straight path. In
addition, depth sensors by nature cannot distinguish soft
unstable surfaces such as vegetation from rigid ones.

Conventional approaches assume that the terrain informa-
tion and any uncertainties encoded in the map are reasonably
accurate, and the focus shifts solely to generating the motion.
Offline methods use a pre-scanned terrain map, compute
a handcrafted cost function over the map, and optimize a
trajectory which is replayed on the robot [31], [21]. Online
methods generally employ a similar approach but use only
onboard resources to construct a map and continuously
replan trajectories during execution [15], [9], [18], [2], [6],
[12], [14], [29]. Overall, the focus of all the approaches
mentioned above is on picking footholds and generating
trajectories given accurate terrain information. Data-driven
methods have recently been introduced in order to incor-



porate more complex dynamics without compromising real-
time performance and it has been applied to physical robot
locomotion [10], [17], [27], [23], [30], [26], [16].

In both model-based and learning-based approaches, the
assumption of flawless map quality precludes the application
of these methods in uncontrolled outdoor environments.
Existing controllers avoid catastrophic failures by simply
refraining from using visual information in outdoor envi-
ronments [13], [17], [26] or by adding heuristically defined
reflex rules [7], [4].

Here we present a terrain-aware locomotion controller for
quadrupedal robots that overcomes limitations of previous
approaches and enables robust traversal of harsh natural ter-
rain at high speeds (Fig 1). The key component is a recurrent
encoder that combines proprioception and exteroception into
an integrated belief state. It learns to take advantage of the
foresight afforded by exteroception to plan footholds and
accelerate locomotion when exteroception is reliable, and
can seamlessly fall back to robust proprioceptive locomotion
when needed. The learned controller thus combines the
best of both worlds: the speed and efficiency afforded by
exteroception and the robustness of proprioception.

Our contribution is a method for combining multi-modal
perception and demonstrating with extensive hardware exper-
iments that the resulting control policy is robust against var-
ious exteroceptive failures. Handling exteroception failures
has been a challenging problem in robotics. Our approach
constitutes a general framework for robust deployment of
complex autonomous machines in the wild.

II. MATERIALS AND METHODS

A. Overview

We train a neural network policy in simulation and then
perform zero-shot sim-to-real transfer. Our method consists
of three stages, illustrated in Fig. 2.

First, a teacher policy is trained with Reinforcement Learn-
ing (RL) to follow a random target velocity over randomly
generated terrain with random disturbances with access to
privileged information. Then, a student policy is trained to
reproduce the teacher policy’s actions without using this
privileged information. Lastly, we transfer the learned student
policy to the physical robot and deploy it in the real world
with onboard sensors. The robot constructs an elevation map
by integrating depth data from onboard sensors, and samples
height readings from it.

B. Training environment

We use RaiSim [11] as our simulator to build the training
environment. There, we simulate multiple ANYmal-C robots
on randomly generated rough terrain in parallel with an
integrated actuator model [10] to close the reality gap. We
randomize the masses of the robot’s body and legs, the initial
joint position and velocity, and the initial body orientation
and velocity in each episode. In addition, external force and
torque are applied to the body of the robot and the friction
coefficients of the feet are occasionally set to a low value to
introduce slippage.

Fig. 2. Overview of the training methods and deployment. We first train a
teacher policy with access to privileged simulation data using reinforcement
learning (RL). This teacher policy is then distilled into a student policy,
which is trained to imitate the teacher’s actions and to reconstruct the
ground-truth environment state from noisy observations. We deploy the
student policy zero-shot on real hardware using height samples from a robot-
centric elevation map.

C. Teacher policy training

In the first stage of training we aim to find an optimal
reference control policy which has access to perfect, privi-
leged information and enables ANYmal to follow a desired
command velocity over randomly generated terrain. We used
Proximal Policy Optimization (PPO) [25] to train the teacher
policy. The teacher observation consists with proprioceptive
observation opt , exteroceptive observation oet , and privileged
state spt . opt contains the body velocity, orientation, joint
position and velocity history, action history, and each leg’s
phase. oet is a vector of height samples around each foot with
five different radii. The privileged state spt includes contact
states, contact forces, contact normals, friction coefficient,
thigh and shank contact states, external forces and torques
applied to the body, and swing phase duration. Our action
space is inspired by central pattern generators (CPGs) which
keeps phase variables per each leg and defines a nominal
trajectory based on the phase [17]. The action from the policy
is the phase difference ∆ϕl and the residual joint position



target ∆qi. We model the teacher policy πθ as an MLP. It
consists of three MLP components: exteroceptive encoder,
privileged encoder, and the main network, as shown in Fig.
2. We define a positive reward for following the command
velocity and a negative reward for violating some imposed
constraints. Please refer to [20] for details.

D. Student policy training

After we train a teacher policy, we distill it into a student
policy that only has access to information that is available
on the real robot. We use the same training environment as
for the teacher policy, but add additional noise to the student
height sample observation. The student policy consists of
a recurrent belief state encoder and an MLP, as shown in
Fig. 2.2. The MLP structure remains the same as for the
teacher policy and reuse the weight of teacher policy to speed
up training. Training is performed in supervised fashion
by minimizing two losses: a behavior cloning loss and a
reconstruction loss. The behavior cloning loss is defined
as the squared distance between the student action and
the teacher action. The reconstruction loss is the squared
distance between the noiseless height sample and privileged
information (oet , s

p
t ) and their reconstruction from the belief

state. During student training, we inject random noise into
the height samples as shown in Fig. 2.2.

E. Belief state encoder

To integrate proprioceptive and exteroceptive data, we
introduce a gated encoder. The encoder learns an adaptive
gating factor that controls how much exteroceptive informa-
tion to pass through. First, proprioception opt , exteroception
let = ge(õet ), and hidden state st are encoded by the Recurrent
Neural Network (RNN) module into the intermediate belief
state b′t. Then, the attention vector α is computed from b′t.

b′t, ht+1 = RNN(opt , l
e
t , ht)

α = σ(ga(b
′
t))

bt = gb(b
′
t) + let ⊙ α

Here, ga and gb are fully-connected neural networks and
σ(·) is the sigmoid function. We use the Gated Recurrent
Unit (GRU) [5] as our RNN architecture.

III. RESULTS

We deployed our controller in a wide variety of terrain, as
shown in Fig. 1. This includes alpine, forest, underground,
and urban environments1. The controller was consistently
robust and had zero falls during all deployments. Because
of the exteroceptive perception, the robot could anticipate
the terrain and adapt its motion to achieve fast and smooth
walking. This was particularly notable for structures that
require high foot clearance, such as stairs and large obstacles.
The robot was able to leverage exteroceptive input to conquer
terrain that was beyond the capabilities of prior work that
did not utilize exteroception [17]. ANYmal successfully

1Video: https://youtu.be/zXbb6KQ0xV8
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Fig. 3. Our locomotion controller perceives the environment through height
samples (red dots) from an elevation map (A). The controller is robust to
many perception challenges commonly encountered in the field: missing
map information due to sensing failure (B, C, G) and misleading map
information due to non-rigid terrain (D, E) and pose estimation drift (F).

traversed challenging natural environments with steep in-
clination, slippery surfaces, grass, and snow (Fig. 1 A-
J). The robot was robust in these conditions, even when
occlusion and surface properties such as high reflectance
impeded exteroception. Our controller was also robustly
deployed in underground environments with loose gravel,
sand, dust, water, and limited illumination (Fig. 1 K-N).
Urban environments also present important challenges (Fig.
1 O-R).

Throughout our experiments, we encountered many cir-
cumstances in which exteroception provides incomplete or
misleading input. As shown in Fig. 3 B-G, the estimated
elevation map can unreliable due to sensing failures, limi-
tations of the 2.5D height map representation, or viewpoint
restrictions due to onboard sensing. Overall, our controller
could handle all of these challenging conditions gracefully,
without a single failure. The belief state estimator was trained
to assess the reliability of exteroceptive information and
made use of it to the extent possible. When exteroceptive
information was incomplete, noisy, or misleading, the con-
troller could always gracefully degrade to proprioceptive
locomotion.

IV. CONCLUSION

We have presented a fast and robust quadrupedal lo-
comotion controller for challenging terrain. The controller
seamlessly integrates exteroceptive and proprioceptive input.
Exteroceptive perception enables the robot to traverse the en-
vironment quickly and gracefully by anticipating the terrain
and adapting its gait accordingly before contact is made.
When exteroceptive perception is misleading, incomplete,
or missing altogether, the controller smoothly transitions
to proprioceptive locomotion. The controller remains robust
in all conditions, including when the robot is effectively

https://youtu.be/zXbb6KQ0xV8


blind. The integration of exteroceptive and proprioceptive
inputs is learned end-to-end and does not require any hand-
coded rules or heuristics. The result is the first rough-terrain
legged locomotion controller that combines the speed and
grace of vision-based locomotion with the high robustness
of proprioception.

Future work could explicitly utilize the uncertainty infor-
mation in the belief state. Explicitly estimating uncertainty
may allow the policy to become more careful when extero-
ceptive input is unreliable, for example using its foot to probe
the ground if it is unsure about it. In addition, our current
implementation obtains perceptual information through an
intermediate state in the form of an elevation map, rather
than directly ingesting raw sensor data. Appropriately folding
the processing of raw sensory input into the network may
further enhance the speed and robustness of the controller.
Another limitation is the inability to complete locomotion
tasks which would require maneuvers very different from
normal walking, for example recovering from a leg stuck in
narrow holes or climbing onto high ledges.
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